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From the definition of spinors as the minimal left (right) modules of multivectors 
(that is, of vectors and their outer products), we can construct a unified mathe- 
matical approach for the study of matter and its interaction fields, which are 
either defined as fields in the geometrical spacetime or considered as generators 
of the physical spacetime. It is also shown how matter and interaction fields can 
be represented either by spinor fields or by multivector fields, both types of fields 
carrying the same information as the traditional corresponding spinors, vectors, 
or tensors. Geometry is more transparent in one representation (multivector 
form), and physics is more obvious in the spinor representation. Our theory 
provides a unified and totally self-consistent representation of quarks (barions), 
leptons, and all their known interactions. 

1. I N T R O D U C T I O N  

A s t a n d a r d  a p p r o a c h  fo r  t he  c o n s t r u c t i o n  o f  re la t iv i s t i c  q u a n t u m  t h e o r y  

is the  de f i n i t i on  o f  m a t t e r  a n d  i n t e r a c t i o n  f ields as sets o f  s i m p l e  o r  c o m p o s i t e  

sp ino r ,  vec to r ,  o r  h i g h e r - o r d e r  t e n s o r  f ields,  w h i c h  ca r ry  s o m e  " i n t e r n a l  

q u a n t u m  n u m b e r s , "  in e a c h  p o i n t  o f  a r e f e r e n c e  (fiat o r  c u r v e d )  s p a c e t i m e .  

T h e  r e f e r e n c e  f r a m e  ca l l ed  s p a c e t i m e  (usua l ly  t a k e n  as g iven )  is g iven  a 

g e o m e t r i c a l  s t ruc tu re  n e e d e d  to a l l o w  it to h a v e  a set o f  ba s i c  p r o p e r t i e s  

r e l a t ed  to the  " e x i s t e n c e "  in the  real  w o r l d  o f  ser ies  o f  even t s  a n d  as a 

ca r r i e r  o f  t he  t r a j ec to r i e s  o f  phys i ca l  s ignals .  

T h e  b a s i c  s ignal  t r a j ec to r i e s  for  the  de f in i t i on  o f  s p a c e t i m e  are  t hose  

o f  l ight  rays ,  a c c o r d i n g  to the  p r o c e d u r e  s t a r t ed  by  E ins t e in  w h e n  he  used  

nul l  vec to r s  fo r  the  l igh t  t r a j ec to r i e s  as a ba s i c  c o n c e p t  in the  de f in i t i on  o f  
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spacetime, with the Lorentz transformations becoming a basic geometrical 
property of spacetime. In this way many laws of physics were formally 
transformed into geometrical relations. 

In a sense it was unfortunate that, historically, spinor fields (and the 
quantization of action and angular momentum) could not be incorporated 
in these early definitions of the physical spacetime. They had to be added, 
in the formulation of the relativistic quantum field theories, as "new" types 
of covariant fields. Quantum mechanics incorporates the concept of the de 
Broglie phase of the different fields in such a way that the boundary 
conditions for the de Broglie phase induce the concepts of quanta of energy, 
momentum, and angular momentum. The de Broglie phase has remained 
as a mysterious "angle," at least in the sense that it has not been directly 
related to geometrical quantities or properties of spacetime. This situation 
can be somewhat annoying due to the discreteness (or "quantizat ion") of 
angular momentum in units of h/27r, because angular momentum is 
definitely related to rotations in a given spacelike plane (of spacetime). 
Another indication of a possible geometrical meaning of h is the appearance 
of  spin angular momentum, including half-odd-integer spins when the 
introduction of spinor fields in physics made it clear that the half-odd-integer 
representation of the Lorentz group belongs to the natural structure of 
spacetime. 

In this paper we will show that the consideration of spinors and 
multivectors in a unified form clarifies all these physically related facts and 
allows a geometrical definition of the de Broglie phase, providing a unified 
formulation of the quantization of action and angular momentum, a 
geometrical interpretation of isotopic spin, weak charge, and color, as well 
as of the related interaction gauge fields, all this within the framework of 
the (multi)vectorial formulation of spacetime. A geometrical meaning of 
the appearance of rest mass when Riemannian spacetimes are considered 
is also included. As a corollary, we will show, first, that a collection of 
multivector fields, related to a matter field, carry the same information as 
the corresponding spinor fields, and, second, that the collection of vector 
(gauge) interaction fields can be considered as operators among the multi- 
vectorial or spinorial matter fields (therefore as multivector fields represent- 
ing the interaction between the matter fields). 

We will then be using two interchangeable points of view: (a) Given 
the geometry assumed for the physical spacetime, the observed matter and 
interaction fields are those that can exist in it. (b) given the known matter 
and interaction fields, they generate a framework for observation and 
description which is the (multi)vector spacetime. 

As a result of this tautomery, we will show that the physical spacetime 
can be considered as generated by the collection of interacting multivector 
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matter fields in the process of  defining a " f ree"  particle, an abstraction 
which is only possible when an observer constructs a theory for physics 
within the frame of  what he defines as his physical spacetime. 

The mathematical  and physical theory here presented corresponds, in 
the appropriate  limits, to the standard theories of  elementary particles and 
their interaction fields, in all their aspects, and provides a natural link with 
general relativity. 

The paper  will be developed in a self-consistent way, providing the 
definitions of  all quantities used. An attempt is made to use the standard 
terminology whenever no misinterpretation can result. Even when new 
concepts are introduced, they are given the equivalent accepted names when 
the identification with more widely accepted terms is possible. The multivec- 
tor and spinor algebra is fully included to facilitate the reading of the paper. 

2. THE M A T H E M A T I C A L  S P I N O R - V E C T O R - M U L T I V E C T O R  
STRUCTURE OF C O M P L E X  SPACET1ME 

2.1. Some General Considerations 

In this section we present in a systematic notation and in a unified 
representation the structure of  spacetime as a system of vectors, multivectors, 
and spinors. There are several reasons for condensing here this mathematical  
system, besides the definition of our notation, the most relevant one being 
the explicit formulation of the geometry of spacetime in terms of spinors 
and their "outer"  products, which is the fundamental  tool that will allow 
us to show the geometrical meaning of many quantities in elementary particle 
physics. Moreover,  some relationships have not been discussed before and 
we need a correct formal definition of the quantities involved. The use in 
Section 4 of  Riemannian geometry also requires the analysis of  the covariant 
derivatives of  (multi)vectors and of spinors. The notation is a development 
of the one used in previous papers (Keller, 1986a, b). 

We must start by considering the physical spacetime ~ as an orthogonal 
space M = R1'3 over R with a nondegenerate quadratic form 

f ( x )  .2 2 2 2 = X o - - X l - - X 2 - - X  3 (1) 

and an associative algebra (containing R p'q, N = p + q, as a subspace), where 
the square of  a "vector"  x equals its quadratic form x 2 = f ( x ) ,  which is the 
Clifford algebra R1,3 with a ring of dimension 2 N = 16. The Clifford algebra 
is the direct sum of the multivector spaces, each k-vector space is of  
dimension (~) with 0 -  < k<_ N, and, of course, ~k ( ~ ) = 2 N '  A basis k-vector 
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is given by 

ea(k)=eoqeo~2 . . .  e~,k, 1<--al<a2 < . "  " < a k < - - N  (2) 

The treatment given here could be made very general, for any 
orthogonal space R p'q (see, for example, Lounesto, 1980), but in fact most 
applications to physics of  vector Clifford algebras involve spinors and 
multivectors in spaces with five dimensions or less, which are the cases 
discussed here explicitly. Historically, a Clifford algebra of two-dimensional 
space was introduced at the beginning of  the last century by Wessel and 
thoroughly discussed by Hamilton in his famous formula i 2 =j2= k2= i j k  -= 

-1  to study (surprisingly, because the duality between surfaces and vectors 
in R 3 was not known) three-dimensional rotations and, independently, by 
Pauli in the study of the spin algebra ~. The multivectors for three- 
dimensional space ~c were introduced, at the beginning of the century, 
either as complex quaternions by Hamilton or as the standard three- 
dimensional space vector algebra, through the definition of axial and polar 
vectors, by Gibbs. The cases of  four-dimensional ~ and five-dimensional 
(complex four) ~c algebras were developed by Dirac, who also introduced 
the use of bispinors [the Clifford algebras mentioned here are isomorphic 
to matrix algebras: ~c - C(4), ~ - H(2) ,  ~c ~ C(2)]. Because we only use 
in this paper @c and their subspaces, our presentation is restricted to this 
particular algebra. The basic references for spinors remain Cartan (1913), 
Brauer and Weyl (1935), and Cartan's book of 1937, later reprinted (Cartan, 
1981), which includes a thorough discussion of multivectors and of the 
mapping of spinors into multivectors, the so-called Cartan map. 

We are also not interested here in the particular cases p - q = 1 mod 4 
(where the Clifford algebra generated by the totally antisymmetric products 
of the orthonormal basis of  R p'q can be decomposed into two ideals and 
the representation requires special treatment), except as subspaces of ~c, 
which will automatically be included in our presentation. We will not be 
omitting then any fundamental case in the formalism used here. 

Emphasis will be put here on the vector, multivector, and spinor basis 
sets and their relationships, which will be denoted by e~ (vector basis), ea 

(multivector basis), X~ (spinor basis), and X; (conjugated spinor basis). 
Many equations will be written relating the different basis sets, for example, 
definitions like eB = e~er where putting together e~ and er means multiplica- 
tion of those two basis elements, or in the same fashion e~xa, X.~eG, XaX~ l , 

and X~Xa represent multiplication of a multivector onto a spinor, (conju- 
gated) spinor into a multivector, spinor into a (conjugated) spinor, and 
(conjugated) spinor into a spinor, respectively; if a representation is made, 
the s a m e  multiplication rule should be used in all cases. It is well known 
that matrix multiplication is an appropriate representation, and that the eA 
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are represented by square matrices and that the Xo (X~) are represented by 
column (row) matrices with matching dimensions. 

The use of  X, and X~ spinors (usually called column or row spinors 
because of the foreseen representation) enlarges the multivector Clifford 
algebra generated by the ea into a new mathematical system KN ~ Rp, q. We 
are aware that several possible formalisms for KN are useful, but only one 
will be used in this paper, which is better adapted to the uses and notation 
of  elementary particle physics. We will consider Dirac spinors (4 entries) 
as the fundamental mathematical entities and consider Weyl spinors (2 
entries) as a Dirac spinor where a restriction has been made. A spinor pair 
will then consist of two Dirac spinors (Weyl spinors if the restrictions 
apply), etc. 

2.2. The K Algebra Generated by the Spinors 

Consider the primitive concepts of the spinor space 52 with spinor basis 
Xo and its dual spinor space 52* with spinor basis X], provided with a 
symmetric spinor metric, given by the spinor inner product 

r r 
XbXa = C,b; Xb C s Xo C ~, (3) 

Cab is a complex number (in this paper Cab = 6ab) and a, b = 1, 2 , . . . ,  n. They 
generate a set of 2n 2 linearly independent multivectors ,/Re @c as the linear 
combination of the spinor outer products 

M = S Mabxox; (4) 
a,b 

where the M ab are complex coefficients. @c represents the multivector space. 
The set of multivectors and spinors has the closure property 

if X~52 and M~@c t h e n M x ~ s  (5) 

and for the dual spinor space 

if X ; e ~ , ~ a n d M e @ ~  t h e n x + M c ~ *  (6) 

where X=Y,o k0~ and X*=~b ~O*bXb, and @o and k0 *b are complex 
coefficients. The closure is proven by direct substitution of (3) and (4) into 
(5) or (6). The spinors are then modules of the multivectors, 52 a left module 
and 2+ a right module. In the case n = 2 p the number of multivectors D = is 
2n 2= 2 2p+~, and 2p = N is the dimension of  the vector space generating a 
closed multivector algebra, discussed below, that is, the number of anticom- 
muting elements needed to generate k~. If n ~ 2 p, a new type of algebra is 
generated, the discussion of  which is beyond the scope of the present paper 
(Keller, 1988; Finkelstein et al., 1986). If in (3) and (4) Cob and M ~ are 
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restricted to be real numbers, then the dimension of  the multivector algebra 
is reduced to D = n 2= 2 N. The dimension D corresponds to the number 
of  degrees of freedom in the linear Clifford algebra which has been 
constructed. 

Corollary. The multivectors M ~ ~ constitute a (complex) associative 
algebra (of dimension D = 2N+~). 

Proof If  M, M', M"~b~ and d , f ~ C ,  then: 

(1) M + M ' = M "  by (4) (7a) 
(2) d ( M + M ' ) = d M + d M '  by (4) (7b) 
(3) MM'=M"  by (3) and (4) (7c) 
(4) M(M'M") = (MM')M" by (3) and (4) (7d) 
(5) If  the particular representation is chosen where C.b = 6~b, then the 

multiplicative unit element can be written 1 = Y~. X.X] and it is 
immediate that 

1M=M1 =M (7e) 

and 0 is the addition unit element. 

We can moreover define a set of 2 "+~ basis multivectors MA (or k- 
vectors) such that any multivector M = Y~A mAMA and MAMA = :el, to gener- 
ate a normed ring MAMB =Mc because (MAMB) = (Me) == +1. Also, N (or, 
for a real algebra, N +  1) mutually anticommuting elements M, of the ring 
can be chosen to generate the entire ring. The e, = M, elements are called 
the basis vectors of the ring. Any basis k-vector is constructed then as the 
product of k different basis vectors as defined below. 

Then the spinors generate the multivectors and the spinors in turn are 
the modules of the multivectors. The set of spinors and multivectors together 
generate a closed mathematical system we have called KN, defined by (3) 
and (4). In the following section we will use the system itself to generate 
the (complex) Riemannian K~  ) spacetime and study its geometrical 
properties. 

For Kq we will use either (a) the four entries given by Dirac spinors 
X ~ ~2,= or bispinors [consistent with a Weyl spinor ~lb ~ ~2,o and a conju- 
gated Weyl spinor ~=h = ~b ~ ~0,=; then X~ = (~b ,  ~'~b), the c above a spinor 
denoting spinor conjugation, ~,c = e~*, where e is the antisymmetric symbol 
(matrix) for two dimensions and the asterisk denotes complex conjugation 
of the coefficients] or (b) a pair wb of Weyl spinors, wb 
which can be mapped onto the Dirac spinors X* 6 ~ ,2 .  

In this second case, when a spinor pair (both of the same representation) 
is used, the multivector representation of  the improper orthogonal transfor- 
mations is not possible. In every spinor dimensionality n -- 2 v the distinction 
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between bispinors and a spinor pair is possible and meaningful, the com- 
ponent spinors being of dimension m = 2 p-~. 

2.3. Dirac Spinors and the Multivectors Generated by 
Their Outer Products 

The vectorial space 522,2 of  the Dirac spinors with basis elements Xa E 52, 
~-~ 

a = 1, 2, 3, 4, and its dual space 52~,2 with basis elements Xa ~ ~2,2 are taken 
as the primitive set of  elements. A general element is 0 = ~a 0aX~ ~ 22,2 

A spinor metric is defined by the (noncommutative) product 

t a XaXb = 8b (8a) 

and a "multivector" O b by the (noncommutative) product 

O] =XoX; (8b) 

We have already indicated that a proper  representation will require 
that (6) and (8) are automatically satisfied; the representation of  X~ by a 
column matrix and X; by the transpose of  the complex conjugate of  the 
column matrix, with four entries each, constitutes a faithful representation. 
The products 2 are then, simply, matrix products and the full algebra of the 
K-system a matrix algebra. A representation of  the equivalent system for 
Euclidean 3-space can be found in Hamilton (1984). 

There are 16 elements O b, which have a direct meaning as operators 
in spinor space from (6) and (8). As each of  them acts nontrivially only on 
one spinor Xb (or X~ on the right), it is more meaningful to construct linear 
combinations which have a nontrivial action on the complete set of four 
Xb (or X~), mapping each and all spinors Xb in a corresponding spinor X~: 

~'~a ---- A1XaxXI + A2Xa2X~ q- A3X.~X~ + A4XaaX*4 (9) 

with the particular, normalized choice of the complex coefficients 

A~ ~ 0 and ~, [a,~] 2 - 4 (10) 
a 

the set {MA} constitutes a Clifford ring (of 16 or 32 elements in our case) 
and generates a Grassmann-Clifford algebra (invariant under a similitude 
transformation). 

2There is in fact only one type of  product in the algebra of  the X., X~, and the O~; this 
product can be appropriately represented by matrix multiplication. The outer product O~ = 
a'.X~ results in O~ being a square matrix. That is, if the matrix elements of  X, and O~ are 
(X,),, and (0~) ...... respectively ( m , n = l , 2 , 3 , 4 ) ,  then O~X~.=X~,6~=~.,,(O~),,.,(X,.),, = 
(X.),,,6~ as far as (X;h,,(X,,),,, = (6~),1. 
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For example, the identity operator or 1 (or scalar unit) is 

+ t + ( 1 1 )  1 ~ X I X 1  "-1- X 2 ) ( 2  + XBX3 -[- X4X4 

the chirality operator Mob (up tO a phase e i(ch)) 
= t 5" ~ t 1 2 3 

~ c h  -X1XI-)(2)(2q-X3X3+/I(4X4=-l)%I-1-,~2-~)~3+z,g4 (12) 

and the spin operator Ms (up to a phase em')) is 

~r t t-- t t _l_ 1.~11 __ /922+ ~3 4 = X l / ~  1 -- X 2 X  2 ~ X 3 ) ( 3  -- X 4 ) ( 4  = -- Oa (13) 
All of them map Xa -q' +Xa, and are the basic operators to classify the spinors 
according to a pair of attributes. Mch is usually called Ys. 

There should be no physical implication in calling them the chirality 
and the spin, but they are given here the names that will allow the immediate 
identification of the Xa as a basis set for spinors with physical significance. 
(For the case of Euclidean 3-space only one attribute is needed, which is 
universally named spin. No widespread name has been given for attributes 
needed for dimensions higher than 5 or for spaces with 5 dimensions and 
signature p + q = 5 and p - q = 1 mod 4. The "standard" representation in 
quantum mechanics can be obtained from the "chiral" representation by a 
linear transformation and therefore there is no conflict in using the "chira l"-  
"spin" representation here.) 

The three operators 1, Mob, and M, can be combined in a number of 
important ways (here P~ = PA): 

The spin projectors are 

PC =�89 +M~); Pr =�89 (14a) 

the chirality projectors are 

PL = �89 --Mch); PR =�89 (14b) 

and the spinor projectors are 

01 = PLP~; "0~ = PLP$; O~ = PRP.f; 04 = PRP~ (15) 

which project, respectively, spin up, spin down, left-handedness, right- 
handedness, and the spinor basic elements of the set Xa (X~ on the right). 

The operator MsMou = [ ~ c h [ ~ s  appears in the spin selector operators 
just defined. 

Given the previous operators, there are four others that are especially 
important, the step operators that map ("transform!') the set {X,} into itself: 
each X~ ~ X~' r X~. We can choose this mapping in the basic four types (see 
below for an additional explanation of the choice presented here). 

Co. Change chirality, but not spin. 
e~. Change chirality and spin. No change in spinor relative complex 

phase. 
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e 2. Change chirality, spin, and the spinor relative phase by e i| • 
Change the phase of R to L by • 

e3. Change chirality, not the spin, changing the spinor relative complex 
phase by e i~ • and the R to L phase by +1. 

It would be easy to show that any other possible mapping is realizable, 
using a combination of the e~ (a  = 0, 1, 2, 3) and Mch (or Ms). For example, 
eoei will change the spin only, eoe3 gives a relative phase only, etc. 

The set e~ anticommutes with Mch and anticommutes among itself, 
e~[~ch=--[~ehe~ and e~et~=-et3e~ , ~ # a ,  all a , / 3 = 0 , 1 , 2 , 3 .  Also, e ~ = l  
and eiei = -1  for i = 1, 2, 3. 

The anticommuting extended five-member set {e~, Mch} can generate 
the complete Clifford ring of  operators on the Dirac spinors. This is then 
a basic ring for the algebra R2, 3 ~" Ro, 5 ~ -R4 ,  l containing as subrings R0,4, 
Rl,3, R2,2, R3,1, and R4,o and their complexifications [R U or R3,1 are the 
spacetime geometric algebras of signature g~,~ = diag(1, -1 ,  -1 ,  - 1 )  and 
g~,~ = diag(1, 1, 1 , - 1 ) ,  respectively]. 

The explicit forms of e~ are (up to a complex phase factor) 

eo = 0~+ 042+ 03+.0  4 (16a) 

el = 0 ] +  2 3 4 (16b) 0 3 - -  0 2 - -  0 1 

e 2 = i ( - O ~ +  2 3 03+ 0 2 -  "04) (16c) 

1 3+ 04 (16d) e 3 = z~ 3 - -  0 2 __ 0 1  

The particular choice of the four e~ was made to fulfill the condition 

[~ch = ieoele2e3 (17) 

ensuring the condition e~[~ch = --Mche~ given above (the factor i makes [~ch 
linearly independent from eoele2e3 !). The set of  e~, will be used to give the 
spacetime its best known representation with signature Rl'3. Also, 

~Y~s = ie2e3 (18) 

The defining properties of the e~ can be seen in a more apparent form 
by remembering that we have chosen 

MchX1 = -X1 and M~XI : "~-,~/1 

MchX2 = -X=  and M,X= = -,g2 

Mch,~'3 = -{'-X3 and M,~X3 = +X3 
(19) 

M c h X 4  = 21-,)(4 and MsX4 = - - , ) ( 4  
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In the case of  eo, using e0l~ch ----- --Mcheo and the fact that gp, q is an associative 
algebra, we have 

~ ( eox~,), a' = 1, 2 
M(eoX~,) = -eo(MX~,) = [-(eoXa),  a'= 3, 4 (20) 

and therefore eo has made a mapping X~,-+ eoXa'=Xa which has changed 
the chirality of  Xa,. A projector can be defined P+ = (1 + e0)/2. 

The definitions of  the ei, i = 1, 2, 3, are also shown to be fulfilled in 
the same way. 

The anticommuting set e~ generates a vector space R 1"3 and a Clifford 
r ing Rl,3, they are therefore called a vector basis set of  R 1'3, a local space 
with the geometric properties of  spacetime. 

The fact that the basis vectors we have chosen (or an odd product of  
vectors), when acting on a spinor, "change"  the chirality of  every elementary 
spinor (that is, of  a spinor corresponding to a definite handness and spin) 
is very important.  Vector (or trivector e,e~ev, a ~/3 ~ 7 ~ a )  operations on 
definite spin-chirality spinors will "change"  them, but composite spinors, 
of  the type ALXL + ARXR, can be mapped  into themselves. In the construction 
of the wave equations for spinors (below) and the study of their gauge 
invariance properties the mapping of left-handedness into right-handedness 
and vice versa will introduce an additional term in the equations which 
breaks the chiral symmetry and generate the rest mass of  the particles. 

To return to the vector and multivector space generated by the spinors 
Xa through their outer products, there are 16 elements O b which, when 
combined through complex coefficients, generate a ring of 32 linearly 
independent  objects (the isomorphic multivector Clifford algebras Ro.s 
Re, 3 ~ R4,1) containing a set of  five mutually anticommuting elements (for 
the case of  R2, 3 they can be chosen to be Mch, eo, e~, e2, and e3 as above). 
For the purpose of systematization we can, however, make other choices 
which will have formal advantages. 

I. Consider the Clifford algebra to be R0.s with basis vectors e~ (v = 
1, 2, 3, 4, 5) e R ~ defined in terms of the products of  our previously given 
R1'3 vectors e~ as 

e~ = {iele2e3, ieo, ieoez, ieoe2, ieoe3} (21) 

Then the e~ generate a 32-element Clifford ring @c = Ro,5, 

@~ -= {1, e~, e~,  e . . . .  e . . . . . .  i} (22) 

where e~o. �9 . =  e~e~. �9 �9 is a multivector. 
The even part of  ~e, denoted ~,+., that is, the set of multivectors with 

an even number  of  products of  the e, elements, is 

~ = R1,3 : {1, e~ ,  e . . . .  } = {1, e~, e ~ ,  e ~ ,  e ~ }  = ~ (23) 
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the real spacetime algebra containing 16 elements (here a =0,  1,2,3 as 
above) represented by the Dirac 3% matrices. 

The even part of  @, in turn, generates the Clifford ring Pc vT~th 8 
elements (here i = 1, 2, 3) 

Pc = R3 = {1, e~ ,  e~13v~} = {1, el, e o eijk} = ~+ (24) 

the algebra of Euclidean 3-space. 
The algebras generated by the Clifford rings given above are calle~!: 

~c = Dirac complex (or complex spacetime), @ = Dirac, Pc = Pauli compk 
Finally, the even part of  Pc is 

P = {1, eij}= {1, i,j, k} = H (25) 

and corresponds to the quaternion algebras H [here called the Pauli algebra, 
because it is generated by the Pauli matrices o'I with norm (~rl) 2= 1]. 

The fact that each successive algebra is the even part of the previous 
one generates a reduction chain of even subalgebras 

~ c ~  ~ Pc-~ p ~ C I  ~ R 1 (26) 

with basis vector spaces of N -- 5, 4, 3, 2, 1, 0 dimensions, respectively. Also, 
~c = ~ + i~ and the 32 elements of ~ can, faithfully, be decomposed into 
16 real and 16 imaginary multivectors. 

II. Another important reduction chain that can be used for physical 
analysis is one in which the basis vectors of  each subalgebra (dimension 
N - 1 )  is a cut of the basis vectors of the previous one (dimension N)  by 
multiplication by one of  the basis vectors of the N-dimensional algebra. 
As an example, consider as starting point the basis vectors 

f .  = {~r M~hel, Mche2,  [~che3, Mcheo} (27) 

(here u = 1, 2, 3, 4, 5) generating the Clifford ring R4, I ~ ~ c .  

The cut ~ h f ,  = {1, ea, e2, e3, eo} produces the basis for the ring R1, 3 

and the second cut (or spacetime cut) 

e0e~ = {1, e01 , eo2, e03} (28) 

produces a basis for the ring R3 of Euclidean 3-space, isomorphic to the 
Pauli matrices, used in what is usually called spinor analysis where two- 
component  spinors are considered. 

The examples presented here should be enough to show that the 
geometries generated by particular linear combination of Ob cover the more 
widely used approaches to spacetime algebras used in physics. Our emphasis 
has been on the vector and multivector basis set, rather than on the com- 
ponents of the vectors and multivectors; then the formulas we will obtain 
are representation-independent formulas. The fact that we have chosen a 
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nomenclature (chirality and spin) to simplify the application in physics of 
the algebras generated is not restrictive insofar as they have not been given 
any physical meaning yet. 

In Appendix A we present some relevant relations of  the algebra, both 
for spinors and for multivectors. A comprehensive reference to Clifford 
algebras as used in physics is Chisholm and Common  (1986). 

3. S P A C E T I M E  GENERATED BY A LARGE C O L L E C T I O N  OF 
INTERACTING S P I N O R  FIELDS 

3.1. The Universe Considered as a Collection of  Spinor Fields 

In the previous section we have seen that even the consideration of a 
single spinor field ~O generates a mathematical  structure through the (exten- 
ded Cartan) mapping 

= = ~bOo;  ~ b  ~b*b c C I  (29) 
a a b  

A collection of interacting spinor fields can be described either as a 
single but very complex unit, or as generating an average system, with some 
properties where every field can be described as almost "f ree"  interacting 
in a particular way in the background of the average system. The properties 
of  the fields are in any case redefined in terms of the background system 
to which it belongs. The resulting elementary spinor fields and their inter- 
action fields will be either simple or composite. 

The word field has been introduced from the beginning because the 
description i~a terms of  the properties of  the average system requires the 
use of  a set of  parameters  {x,} to relate the spinor (and its interactions) to 
the system. 

The system is called the universe, an appropriate  name because for 
each interacting field the rest of  what is relevant to it is included in the 
universe. 

A series of  postulated principles will be used, as follows. 

Postulate L Existence. The universe consists of  a collection of interact- 
ing fields, and has the mathematical  characteristics generated by the fields 
themselves and their interactions. 

All fields in turn must be redefined in terms of the properties of  the 
universe and must be such that they can exist in it, in the sense of  mathemati-  
cal compatibility. All fields that are compatible with the mathematical  
characteristics of  the universe should also exist, or the universe must be 
redefined otherwise. 
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As a consequence, it is of  no physical importance whether we start by 
postulating the existence of the universe and its average properties (usual 
procedure) or by postulating the existence of the interacting fields, the 
collection of which wilt generate the universe (the procedure that will be 
followed in this paper).  The idea of constructing the universe from elemen- 
tary notions related to fields has been proposed by several authors, for 
example,  Marlow (1984) and Penrose (1971). 

Many types of  universes can then be thought of  as being constructed 
from interacting fields, but we have chosen to start from Dirac spinor fields 
(with 2 p degrees of  freedom, p = 2) because we want to construct the universe 
of  the physical spacetime where matter, radiation, and the physical vacuum 
(the average universe), in the way we know, exists. 3 Composite fields will 
be considered to result from the combination of  Dirac spinors. 

In order to construct a meaningful average universe, or at least a 
universe where uncertainties are not so large that they could render useless 
the definition of its geometrical elements, we need a second postulate 
referring to the possibility of  creating a system consisting of an average 
background and singling out of  it fields (free or interacting) for study. 

Postulate II. The universe consists of  a very large collection of interact- 
ing fields and their relation is such that it can be considered to be isotropic 
and homogeneous,  at least in a first approximation.  

The homogeneous universe constructed in that way will acquire several 
properties: 

(a) It is finite if the collection of interacting fields generating the 
physical frame is finite. The simplest form (to construct a vector space) is 
the use of  the mapping of the fields into multivectors (we have shown in 
Section 2 that those multivectors belong to the Clifford algebra Ro.5 with 
vector basis eu); then each field "in the universe" 0~ generates a set of  
multivectors which have to be related to the multivectors of the other 
fields 0A'. 

(b) As each field can be taken as a reference, then the others have to 
be referred to it in a particular way. We will show in Sections 4 and 5 that 
this is done through an adjustment of  a local "phase ."  

A multivector in complex spacetime is a collection of scalars, vectors 
e . ,  planes, volumes, and hypervolumes; then a possible relation is to relate 
the /c-vectors generated by 0A to the k-vectors of  0h'- As the collection of 
vectors generates the notion of position and distance, all the other terms 

3We will discuss elsewhere the lack of dynamics if Weyl spinors, p = 1 (with 2 ;' = 2 degrees 
of freedom), are strictly used as the basic matter fields and the great degeneracy if spinor 

fields with 2 ; '>  4 degrees of freedom are used (p > 2). 
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correspond to derived notions. A most important notion is of course that 
of  a volume in which the universe exists. The (finite) universe has a (finite) 
volume. Then each field is considered to have a probability amplitude per 
unit volume and the expression $*eoff to correspond to a vector called the 
four-current density with components ($ ~eoeo$, ~*eoel~b, ~*eoe2ffJ, ~b*eoe3ffJ). 
Distances are generated by the notion of interaction. The basic interactions, 
to be provisionally called "light," will be shown below to generate the basic 
notion of  a distance as a world line s 2 = 2 2 2 2 (Xo) -- X~ -- X2-- X3 = 0 and then the 
basic local metric. 

The relation of one basic elementary matter field ~ba to the background 
universe is given by considering that it is described by a nondecaying spinor 
field ~a (in the abstraction of a "free"  field) in the generated spacetime ST. 
This notion requires the mapping of 05A onto the f ie ld  in spacet ime Oh such 
that 

4,~ -~ r = E  r  (30) 
a 

where the basis spinor set Xa generates the basis multivectors M =  
2a,b Mabxax~ and the spinor components ~ contain both the information 
on the existence of the spinor in ST and the information on its interactions 
with the homogeneous and isotropic background universe, with the local 
deviations of ST from homogeneity and isotropy, and the interaction of qS~ 
with other fields. 

For the definition of the ~ we need a form to relate ~,~ to ST: 

Postulate  I lL  All angular momenta Lu~ related to rotations of the matter 
or interaction field in the plane eu ^ e~ of the generated mathematical space 
Ro,5 (with Clifford algebra @,.) are quantized. 

This quantization in the planes of Ro,5 corresponds in the first place 
to the well-known quantization Lij = n ( h / 2 7 r )  of angular momentum in ST, 
because from (21) the planes e34 , e45 , and e53 in Ro,5 correspond to e12, 
e23 , and e31 in R1,3, respectively. 

There is also a second type of rotation S in ~, ,  occurring in the (abstract 
in spacetime) plane 

et ^ e2 = ( iele2e3) ^ ( ieo) = eoete2e3 = Y5 (31a) 

which corresponds to the de Broglie hypothesis if linear momentum p is 
mapped into a spacetime three-vector 

p = p " e ,  ~ p D  =p~et~;  e~ ~ = eoe~e2e3e~ = yse~ (31b) 

[which we called the geometrical  m o m e n t u m  in Keller (1984, 1986a), which 
references are hereafter referred to as K1, K2]. The e~ are usually called 
axial vectors (a generalization to ST of the Gibbs construction). 
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The constant h/2~r introduced here is not really a property of  the 
geometrical frame of reference, but a quantity relating the basic fields to 
the frame: each field is assigned a number  of  volume elements h which are 
to be identified with the possible actions of the field. The basic fields exist 
forever, either in their original form or t ransformed by the interactions 
(represented by a redefinition of the action below); then the total action of 
the universe will be infinite after an infinite time, but for a finite universe 
the total action per unit time is a finite quantity and only actions of  
hypervolume h are distinguishable as physical processes. Then if the bound- 
ary conditions fix an extensive' quant i ty-- le t  us say the fact that after a 
rotation by 2~r we come back to the original s i tuat ion-- then the action has 
to be nh and a quantity Lij = nh/2~ is well defined. 

Our postulate I I I  defines an arbitrary particular form to consider and 
use @c, which is unavoidable at this level of  development of  the theory; it 
fixes at the same time the splitting ~c = @ + i@ and it also requires that a 
coordinate parametrization of ST exists. This postulate relates the 
homogeneity and isotropy of the background universe to the properties of  
the fields that we study in it. 

The finiteness of  the physical universe will also carry an uncertainty 
in the definition of average quantities. For example,  the definition of  a 
position, already limited by the condition on the action, is also limited by 
the fact that the centroid of  a group, as a physical origin, has a probabili ty 
distribution because the different fields are in principle uncorrelated. Then 
the physical frame we are generating will carry uncertainties in the definition 
of quantities which are to be considered when the geometrical multivector 
frame is taken as a representation of the actual physical spacetime. 

There are three types of  statistical uncertainties to be considered; one 
is due to the finiteness of  the number  of  fields No considered, a second is 
due to the average number  of  fields no generating a volume element; and 
a third is due to the (large-scale) local variations in that number  of  fields 
n generating a unit volume n = n0(1 + e). These statistical uncertainties are 
to be added to the physical uncertainty in spacetime position due to the 
finiteness of  the quantity we have called the hypervolume element which 
is allocated to a physical action. 

The notion of distance needs more elaboration; this will be done in 
Sections 4-6. 

3.2. The Spacetime Geometry as Generated by a Uniform Background 
Electromagnetic Radiation 

To show the way the geometry of spacetime can also be considered as 
generated by a uniform background of electromagnetic radiation, let us 
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start our circuitous reasoning by defining that a four-component spinor f 
of the form 

('o) 
f =  f b  = 

is4 

with 

(32) 

represents a massless spin-1 field with the properties of the electromagnetic 
field, f is not a solution of the Dirac equation (DE), as its components are 
related in a way that will not be a solution of DE. They are related instead 
in such a way that they do not correspond to a left-right-handed pair of 
the same spin, but to twice a right- (left-) handed spinor corresponding to 
the same definite spin. Their relative phase is also different from the relative 
phase of the left-right-handed spinor of the Dirac electron theory. 

When the correspondence with the electromagnetic field is made, the 
quantities fk = Fk are 

1 
fk--=~(H+i~_)k, k = 1 , 2 , 3  (33) 

with H and n z being, respectively, the magnetic and the electric field strength. 
In the same form we define that a spinor corresponding to a spacetime 

vector x, is 

~,= 

X + X 3 

X 1 -t- i x  2 

X 1 - -  i x  2 

XO - -  X 3  

(34) 

and for example a current vector j is 

P +J3 

J = Ijl - zj2 

\ p -J3, 

(35) 

The spinors representing the electromagnetic field and the charge 
currents fields are more easily seen in their corresponding multivector form 
by applying the transformations 

S f=  ~ and Sj = J (36) 
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with 

to give 

1 0 1 1 
S =  

- i  i 

0 0 

(o) 
l f f =  F1 

4~ F2 
F3 

obeying the spinorial equation 

S+S = 1 (37) 

1 j ,  (38) 
and ~ J =  J2 

J3 

a y O ~ = ~  (39) 

with ao M = 1 and aM = Si3~53'o7kS*= iSyi;S*, i,j, k =  1, 2, 3 cyclic (the 
"source" J should not appear here, as we have not defined F as an 
interaction field yet). Here e~ ~ 3', again. 

These equations were first derived by Oppenheimer (1931), Ohmura 
(1956), and Moses (1958), considered by those authors to be the Maxwell 
equations in "Dirac form," and shown by Keller and Rodriguez (1984) to 
be a mapping of the multivector Maxwell equations. Note that they are not 
homogeneous or eigenvalue equations (there is no ~ :  term). 

M In this representation the basis vectors e .  are ( 1o 
e~ M = 0 0 M 0 

0 0 , ei = 

0 - i  

o 
0 i 
i o 

0 0 

e~= (i/~ ~ (I~ ~ i) ) 1 0 0 
i 0 eM= 0 0 0 
0 --i ' 

0 0 ,0 0 i 

and the spin matrix 

(40) 

M M EI~ = i e~e~  = ial a2 

with eigenspinors (1 O0 +1) and (Oi+i  0), that is, an inseparable Weyl 
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spinor pair, both of  the same chirality, insofar as the spin matrix 

0 i =,cM 
"r 

�9 - i  0 

0 0 

(41) 

mixes the two Weyl spinors; this is needed as a result of  the space-free 
electromagnetic field being of  a definite chirality. 

The multivectors e ~  are generated by the extended Cartan map also, 

e ~  y~ A4~ ~4 M+ (42) : ea X~ X# 

from the basis spinors X~-  Then a radiation background defines a multivec- 
tor spacetime geometry. And, tautomerically, the spacetime geometry defines 
the basis spinors X~ as its left (right) modules. 

Equation (39) could be written in terms of the original spinor j, instead 
of  the t ransformed J, by a similitude transformation to it: 

+ M i, x o ~  + .,..) t N  ix  �9 S aix0 5 u = S  J a~  0 f = j  (43) 

where the spinorial pair relationship is explicitly shown in the f and j. 
Here '~ + aix = S  aixS. 

4. T H E  E Q U A T I O N  FOR THE M A T r E R  FIELDS 

4.1. Matter  as Spinor Fields Describing Nondecaying Quanta in Spacet ime 

Once we have found that the geometrical relationships created by 
spinors correspond to the multivectors of  spacetime, we have to come to 
the description of matter and interaction fields as those fields which can 
exist in the background universe. This will be done here and in Section 5, 
where, moreover,  we have to show that the relations between the fields 
enlarges our local multivector geometries into the extended body we have 
called the "universe." This will be necessary because the motion ofspacet ime 
distance is not directly produced by the spinor to multivector mapping. 

Postulate I I I  above assumed that a parametrization resulting in the 
standard coordinates of  spacetime was possible, and in fact gave a first 
contribution to fixing scales because it requires that the quantity h = 27r(Lij 
or p .  x) -- S should be obtained by combining characteristics of  the space- 
time and of the physical fields to be described in it through a position 
distribution and a moment  distribution. 

The first approximation will be then to consider a "f ree"  field in the 
universe. The frame we have called the universe that has been created has 
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vector dimension N = 4 when the real Clifford algebra ~ is used, corre- 
sponding to ST. In this background a matter  field d is required to have an 
action Sd = nh. Mathematically, this requires the use of  an eigenvalue 
equation which should be invariant under the basic symmetries of  the ST 
(which was postulated to be homogeneous and isotropic). 

The spinors describing a matter field would be expressed in the spinor 
basis X, as 

tpa(x) = ~ ~ ( x ) x a  (44) 
a 

The basis operations in ST, rotations, generated by the operator 11, and 
translations, generated by an operator D, should leave it unchanged; this 
requires that qJa should be a simultaneous eigenspinor of  12 and D: 

~'~ ~b d = l~b d and D~d = P~d (45) 

The first condition requires that a quantity 1 (which corresponds to angular 
momentum)  should be associated with the field and the second that a second 
quantity p (proportional  to the energy-momentum) should also be associated 
with the field. 

The displacement generator operator has vector character in ST; then 
p is also a vector eigenvalue. The generators of  the displacements are the 
operators D = byuo ~" to be used below in Section 4.2, where we will show 
how Postulate I I I  results in the de Broglie phase. 

4.2. The Multiveetor Dirac Equation 

We follow here our previous treatment (K2), making considerations 
more precise when needed for our present purposes. 

An observer in reference system ~e (or ~ ' )  associates an energy- 
momentum vector p (or p ' )  to an electron (in fact, to any "elementary"  
particle of  mass mo-> 0 and "spin up")  

pt3y~ = p , ~ y ,  (46) 

where the basis vectors of  0 ~ and 5 ~ are related through a Lorentz trans- 
formation 

y'a = ~y~5~-~; ~w-~  = ~-~s163 = 1 (47) 

If  the observer 5 ~' is taken to be that where p ' =  moCy'o, then postmulti- 
plying (46) by 5~P+P~ = 5~P+~, we obtain an equation in multivector form 
relating the particle's system to the observer 's system 5e: 

p~ yt~SeP+ ~ = moC~yoP+ ~ (48) 
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Introduce (see Hestenes, 1966) the Schr/Sdinger operator fit3, propor- 
tional to the displacement generators, 

fiZ~P+~=- hOt3~P+Tl=pZ~P+~, with 12=-1 (49) 

to obtain the multivector Dirac equation (or Dirac-Hestenes equation) 

- yt3Ot3~P+~ = moc~P+~yoI (50) 

where h/2cr= 1 and I is some rotation plane. Hestenes (1966, 1975) 
proposes I = 3'12, but for the analysis of  the rest of  this section we need I 
to commute with all bivectors and accordingly our only possibility is I = 3'5 
(given by Postulate III) .  As a consequence of our choice, the rest mass of  
a physical particle will not be a primitive concept, but the result of  the 
interaction between left- and right-handed component  fields (see below). 
The replacement 3?P+r ~ ~o  conceals the need of  P+z in (50). 

The general solution 3? = LQo to the multivector equation (50) where 
Q0 = A e x p [ - I p  �9 x/(h/2~r)] can be "gauged"  

37P+~ ~ q~ = A' exp{- I [p  �9 x +  qS(x)]/h} (51) 

if the differential operator is generalized to a covariant derivative y ,0  ~ 
%,D ~. In Section 5 we give a detailed discussion of D r. In (51) the more 
general gauge "angle"  is a multivector corresponding to the even algebra 
of  RI,3, which then commutes with 2'5 = %123, 

~b(X) = (~scalar(X) -~ "~5q~PS ()() -J- ~/p.]/vOP'~']V(X) (52)  

The scalar part is usually interpreted as corresponding exclusively to 
the electromagnetic field, but in our theory we interpret concerted contribu- 
tions from the scalar and from the pseudoscalar parts, after a more general 
definition of D '~ (Section 5), as corresponding to the weak and color fields; 
finally, the bivector part  contains the effect of  the gravitational field (Keller 
1984, 1986a, b). That is, the interaction fields are given as boundary  data 
in the phase of  Q to represent both the rest of  the physical world and the 
physical effect of  the particle on itself. The origin of  the color and of  the 
electroweak interaction symmetries between different fields will be discussed 
below (see also Keller and Rodrfguez-Romo, 1990). 

As usual, the elc :tromagnetic interaction appears as a (complex) phase 
factor e -~'h, which will produce an "extra"  energy-momentum 0~'e-~'q = 
(eA,~/c)e -~,  the A,  being the components of  the usual electromagnetic 
field vector. The weak and color fields will also produce an "extra"  energy- 
momentum of mixed vector-"axia l"  vector character and the gravitational 
field changes the local, fiducial, frame y~, -0 y~(x). The gravitational interac- 
tion arises because, in order to compensate such a gauge transformation, 
a vierbein is needed (K1), 

fu=(. f~ e a'~),.=f~.f~; g ~ 1 7 6  (53) 
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where the f o  are locally Lorentzian tetrads, 

&.,. = gO f~ . f~  = [g e-2[]~]**~ (54) 

defining a (gauge-invariant) gravitational "field" 

v v v v c~ 

which will obey, for self-consistency, the "field" equation 

[]2~b = 4GTr ( T -  �89 (56) 

with T the energy-momentum stress tensor of  the total sources. This is 
different from the case of  the scalar and pseudoscalar  parts, where only the 
effect of  sources other than the particle under consideration should be 
considered. The reason for this difference is the fact that the ST geometry 
is generated by all the fields, whereas the "ext ra"  energy-momentum of  the 
electroweak and color interactions is not directly referred to the frame, but 
to the description of the particle as quasi-free in that frame. 

The additional terms introduced by the bivector part in (52) consist of  
two types of  contributions. 

The first is a universal term due to the average curvature (and its rate 
of  change) of  our isotropic and homogeneous system; as constructed in the 
previous section, it is represented by a diagonal tensor O~'ll ~ proportional  
to the time coordinate and results in a term like the right-hand side of  (50), 
because it contributes with a quantity proport ional  to 3'o ( remember that 
3'o is the operator  linking right-handedness to left-handedness in our rep- 
resentation); then it contributes to the rest mass of  all particles where the 
possibility of  a combination of left- and right-handed fields is given. Its 
role is exactly the same as that of  the Higgs fields discussed in Section 5.3. 
The curvature of  the universe breaks the right- to left-handed symmetry 
which is taken as a basis for the construction of the theory in the following 
paragraphs.  In a curved universe of  sufficiently large curvature, there would 
be no need for a Higgs field in order to give mass to the matter fields in 
the standard model of  elementary particles. 

In a slightly different sense (part of) the rest mass of  the particle is 
already the result of  introducing a covariant derivative in the equations to 
account for the constant average curvature of  the universe, and we can say 
that a contribution to rest mass is obtained as a price for locally considering 
the universe to be flat in our equations below and explicitly eliminating the 
bivector term in (52). 

The second part of  the contribution from the bivector terms in (52) 
represents the local t ransformation of the coordinate system resulting in 
the local gravitational interactions for the particles, which in general could 
be taken into account via the standard formulas of  general relativity unless 
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higher-order terms had to be considered with the set of equations (53)-(56), 
once the covariant derivatives, as introduced below, are used. 

The standard form of  the free-particle Dirac equation is obtained 
(Casanova, 1976) using a spinor u (composite in our theory) such that 
yoU = u and Iu = iu, to define q~u = ~0 and ~ y o l u  = - i 0 ;  here 0 is now a 
particular spinor projected out of ,Is, 

iy~O~qt = moc~b or D~b = - imocqq D 2 = 0~0 ~ (57) 

In our theory the choice I =  Y5 from Postulate III is the only one 
allowing the choice (52) of the gauging. But the usual column spinors cannot 
simultaneously be eigenspinors of 3/o and of y5 (recall that yoy5 =-ysYo);  
then for rest-mass particles we need a more general spinor representing a 
collection of  fields. 

There are two main possibilities in our spinor system to represent a 
collection of  spinor fields X~ d~ needed for composite particles: (1) as a 
matrix U consisting of rows of X~ ) or (2) as a supercolumn E of  X~ ). 
Each of these possibilities has its own advantages. The practical use of U 
is that it can be operated on the right by the elements of YA (if U contains 
four columns in the 4 x 4  representation of ~c). The use of the column E 
is otherwise standard in most of the elementary particle literature. 

The standard procedure of constructing a supercolumn spinor will then 
be used below (see also K2) to give an explicit formulation of SU(2) x U(1) 
electroweak interactions, SU(3)co~or chromodynamics, and a unified pres- 
entation of  SUe(3) x SUw(2) x Uy(1) in terms of the gauging (52) of  the 
diracon fields. In this theory I = y5 in equation (50) will be used, correspond- 
ing to a plane of @c in (22). 

4.3. Multivector General ization of  the Dirac Equation 

For a massless particle, Dq,0 =0.  The q~0 obeys the Kle in-Gordon 
equation with general solution qb: 

Ga"@ = 0 [or --O~O~d/) = (moc)2dP] (58) 

from which the Dirac solution is obtained using the Dirac operator Do = y ,0"  
to project it out, 

0o = Do qb [or 0o = (Do+ moci)Cb] (59) 

We have used multivectors to generalize (50) and to develop the theory of 
symmetry-constrained Dirac particles (Keller, 1982a, b, 1984, 1986a, b). For 
this purpose we generalize the Dirac construction to a differential operator 
D-valued in the (complex) multivector algebra @,.: 

D D  I = D+ D = O~O~ (60) 
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The Kle in-Gordon equation operator (c = h/2rr = 1) 

(0~0~ + m 2) = (D*+ mi) (D - mi) (61) 

requires -D*rn + m D  = 0; that is, either {A: D* = D allowing that the rest 
mass m # 0 (Dirac's)} or {B: any D obeying (61) if m = 0}. 

Let us restrict ourselves to case B (massless particles) and a D where 
we change (one or) several of the vectors y ,  into a more general element 
YA. A hint comes from the special role of iy5 in elementary particle physics 
and from the general solution qb above. For this purpose we have defined 
a set d of  coefficients {t d} for the construction of  a diracon operator Dd, 

{ a zr . rr} ~ 
Do = y.O ~" "~ Da = cos(n + t~) ~ +  ty5 sin(n + t a) -~ %.0 (62) 

o r  

Da = aa (/z) y~,O u = O~y.; O~ =-- aa(i.L)O ~" (63) 

With the choice of n and t a. integers, we obtain a set of  diracon massless 
fields with definite chirality iys~Pa =+~Pa. In that case aa(tZ)= • or +iy5 

d provided we also restrict t .  = 0 or 1, in order not to mix different chiralities. 
Each Da is characterized by the family index n and the particle field 

type set {ta~} occurring in a .  (tz). The solutions to the massless Kle in-Gordon 
equation (58) projected for a particular diracon field (46) are explicitly 
given by the immediate integration of the symmetry-constrained Dirac 
equation (K1, K2), 

Da~a = 0; D*a = a*a(/z)y~O~; ~ba = DtadP (64) 

a s  

r = B exp(Ip~x.) ;  p~ =- aa(tx)p" (65) 

with X~, = X ~g~,~. 

Before proceeding further, we must first allow for the gauging of  (64) 
and (65). The wave function can be gauged by a phase angle ~d(X) if the 
"f ree"  particle operator (63) is extended to the covariant derivative 

[ e ] 
Dd = 0 ~ - I - ~ A ~ ( x )  Yg (66) 

to obtain the gauged solutions of the generalized Dirac equation 

~b(x) = B exp{l(p~x~, + q5 d (x)]} (67) 
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with 

A~ (x) = A~, scalar(X) "~- A~, �9 ~ ~13 pseud . . . .  la r (x)  t'Y5 + A , ~ ,  t . . . . .  ( x )  y ( 6 8 )  

and the multivector phase angles, generalizing the de Broglie phase, 

qSd (X) = ~ba, s~a,ar(X) + ~ba. ps~d . . . .  la~(X) iT5 + ~ba..~,t . . . . .  (x) y.t3 (69) 

Because both the coefficients ad (tz) in (65) and the multivector gba commute 
with I = ys, in the following we will replace I by its eigenvalues :~i. 

These solutions can be better arranged in families corresponding to a 
d given value of n, with left-handed chirality (for t .  = 0, 1), and a correspond- 

d ing set of antifamilies, with the negative quantum numbers n and t,~, with 
right-handed chirality, as shown in Table I. Here a special collection of 
diracon fields has been made which will be useful (see below) for assigning 
a symmetry and name in accordance with the usual SU~(3) • SUw(2) • Uy(1) 
standard theory classification. The value of n = -1  is chosen as a convenient 
reference to make the identification of the fields as simple as possible. 

The phase factors qSa (x) in equation (67) will allow the "interaction" 
and a resulting "transformation" of each of the basic diracon fields (64) 
among themselves [self-mapping according to a U(1) scheme or mappings 
of several fields grouped in sets, with SU(2) or SU(3) schemes]; it will 
result that a full understanding of any one of the diracon fields and their 
identification with observed elementary particles can only be obtained if 
all particles are considered together. If we study each family (defined by a 
value n) by itself, in a first approximation, and consider the right- and 

Table I. Allowed Sets of  Symmetry-Constra ined Quan tum Numbers  {t d} and {t~ d ---t d + n} 
for Chiral Fields Cor responding  to the Electron Family (n = - 1 ) ,  Satisfying the Generalized 

Dirac Equat ion DaUb d = 0 ~ 

t o t~ t 2 13 to t~ t~ t~ Charge Isospin Color  Symbol Name 

0 0 0 0 - 1  - 1  - 1  - 1  - 1  - 1  - -  e -  Electron 
2 1 2 2 1 0 1 1 +2 /3  1 r u,. Up quark 
2 2 1 2 1 1 0 1 +2 /3  1 b u b 
2 2 2 1 1 1 1 0 +2 /3  1 g u~ 
0 0 1 1 - 1  - 1  0 0 - 1 / 3  0 r dr Down  quark 
0 1 0 1 - 1  0 - 1  0 - 1 / 3  0 b d~ 
0 1 1 0 - 1  0 0 - 1  - 1 / 3  0 g dg 
2 1 1 1 1 0 0 0 0 0 - -  v e Neutr ino 

d and opera tor  D d a r e  defined in equat ions (62)-(64) in the text. ~The quan tum numbers  n, t~,  
The negative value of  n cor responds  to the choice of  e -  as reference. The charges are given 
by the average value ( t]  + trz+ t~3)/3t6 as described by the explanat ion of  (72) in the text. The 
isospin pairs are connected by a change in the t~, such that [t d - tall = (2, 1, 1, 1) rood 2, and 
the color triplets by a change in the t~,' such that t~a _ t v  .a'__ t~d' _ t~a. 
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left-handed electron fields together, we obtain a Spin(8) scheme similar to 
that discussed by Smith (1985), where it is shown, after some parametriz- 
ation, to provide a sound description of observed elementary particle fields. 
In the rest of this paper we will develop from (62), (64), and (66) a basic 
physical scheme of the actual observable particles. 

The physical origin of  isospin is then the existence of a set of relation- 
ships between the diracon fields d with coefficients ad(l~) in (64). The 
grouping of N diracon fields d = 1 , . . . ,  N in a subset gives rise to the 
SU(N) symmetry with fundamental representation (Hermitian) matrices 
A 

T~, the fields members of  the set transforming into each other through a 
gauge transformation, as shown explicitly in the following sections. This 
grouping will allow the introduction of an isospin form of the gauge fields 
A ~  A~~ Then the symmetries of the gauging of the phase 4~ in (52) 
are transformed into the symmetry of the set of diracons. 

The group of symmetries of the coefficients ad(l~) is then the group of 
the unified presentation allowed by the ST algebra, with subgroups corre- 
sponding to the standard model. 

5. CHIRAL GEOMETRY THEORY OF ~SOSPIN AND COLOR: 
LAGRANGIAN FORMULATION OF THE THEORY 
OF DIRACONS 

5.1. Chiral Geometry Theory of Isospin and Color 

A formal presentation of the dynamics of symmetry-constrained Dirac 
particles or diracons can be given in terms of a Lagrangian for the collection 
of particles. We will deduce this Lagrangian from the equations of the 
preceding section and show that it corresponds to the postulated standard 
formulation of grand unified theories, as described, for example, in Close 
(1979), Field (1979), Okun (1982), or Halzen and Martin (1984). 

Table I is useful for an overall presentation of the different particles, 
but it does not show the main symmetries of each type of field in the clearest 
form. In order to do so, we will first discuss the spacetime symmetries of 

d the gauged fields, shown in Table I, generated by the quantum numbers t~ 
(and n). 

One should keep in mind that the Lorentz transformations L preserve 
the multivector character; in each of the different terms, k-vectors are 
mapped by L into k-vectors, even if the "components"  change in the usual 
way; then equations (64) are multivector form invariant. This can be used 
to explore their symmetries. The same is true under spatial rotations. 

For the quarklike diracons a more symmetric formulation can be given 
if the spatial coordinates are transformed in such a way that a reference 
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local direction o f  motion 3'~ of the particle is defined to be y~= 
(3'! + 32+ y3)v~ and the notation t~ =-- iysy. is used in such a way that we 
can explicitly exhibit the vector-(imaginary) axial vector momentum admix- 
ture and show that it is a constant (independent of the "color" of the 
diracon field). 

Let us write in detail the energy momentum multivector p of every 
diracon field d, including the different "colors" red (r), blue (b), or green 
(g) of  the quarks, according to formula (65) and Table I: 

electron e: pe = p~ + 3,2+ 3'3)/X/'3 

p;- = p~ + p ~(y~ + y2 + 3 '~)/ ,q 

quark fi~,: p~ =pOyo+p~(y ' + yD+ y3)/,,/~ 

p~ = p%o + p ~(y~ + y2 + y ~ ) / 4 3  
(70) 

p~ = p~ + 3'~+ 3'D)/v~ 

quark d: pb =pO3'o+p~(y~+ 3'2+ y~)/V~ 

Pgd =pO3"o+P~(3"~+ Y2 ~  3'3)/V~ 
0 v D D D 

neutrino v: p . = p  3"o+p (Y, +3"2 +y3) /v~  

Here p" is the three-momentum and pO is the energy. We can see that 
. .~ D the energy-momentum vectors are all in different phases of the p~ p~ 

rotations. 
Let us now consider a gauge energy-momentum vector field A~3', added 

to the diracon fields with coupling constant proportional to Qr modifying 
the vector part of the momentum, with the energy-momentum components 
given in the same proportion to the time part and to the spatial parts (calling 
3'• a vector perpendicular to the direction of motion 3'.). For the electron 

p,= (pO+ QeAO)yo + (p~+ Qr + Qr (71) 

has components 

timelike 

spacelike parallel 

spacelike perpendicular 

All of them are scalar quantities. 

3'0" P =pO+ QeA o 

3'." p , = p v +  Qr ~ 

3'• �9 p ' =  Qr • 

(72) 

However, for a fi quark (taking, for example, a red quark, the result 
being invariant with respect to color), 

,, 1 1 (3'D+3'~+3'3)=2. 1 %," Y,, = ~  (3', + 3'2+ 3 ' 3 ) " ~  _ ~+~  i3'5 (73) 
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the scalar components will be affected by a factor of 2, and following the 
same procedure for a down quark, the scalar components will be affected 
by a factor of  �89 and for a neutrino the scalar components will be affected 
by a factor 0. 

Then if we make the obvious definition that only the scalar (propor- 
tional to 1) part of the gauge field, treated on an equal basis for the electrons 
and for the quarks or the neutrino, is to be considered first as gauged by 
the field A, the "charges" have to be Qe, ~Qe, �89 and 0, respectively. The 
pseudoscalar (proportional to iys) parts are to be treated on a different 
basis, and will be shown to correspond to the weak and color interactions. 

In the full Lagrangian, to be introduced and discussed below, a first 
term equivalent to the standard Dirac matter-field Lagrangian 

~,~ = i~D~y~b (74) 

is to be replaced by the corresponding expression for diracons: 

~d = i g O / y ~  (75) 

It is in this term of the Lagrangian where we have to introduce an 
electromagnetic [scalar part of ~b in (52)] gauging with a coefficient e for 
the electron field, 2e/3 for the (anti) up-quark field, e/3 for the down-quark 
field, and 0 for the neutrino field. Then in the gauge theory we are construct- 
ing, the charges for the U(1) part of the gauge fields are the (postulated 
usually) integer, fractional, or zero values of  the standard theory. In general 
our method will allow us to develop a gauge theory instead of postulating 
it as in the standard approaches. In this form we are showing the physical 
origin of  the various couplings of the gauge fields, and the role played by 
i75 in it, as a part of the symmetry-constrained Dirac particle theory. 

For this purpose the A field discussed above will have to be enlarged 
and split into contributions, usually called B and W 3 in the literature, and 
new "charges" T 3 and Y are introduced with the standard notation 

Q = T3+ Y/2 (76) 

but the assignment of T 3 and Y to give our values of Q will be straight- 
forward and its physical origin clear. 

It is convenient to start with a rearrangement of the set of d i racon 
fields in groups which will show an explicit S U ( 2 ) x  S U ( 3 ) c  spin(8) sym- 
metry as shown in Table I. 

To start, we explore the SU(2) relations; for each given family we can 
see that the addition of a set of symmetry coefficients { W-} = (0, -1 ,  -1 ,  -1) ,  
modulus -2 ,  to the first row produces the last row and their addition to 
any one of the first group of three up-quark fields produces one of the 
group of three down-quark fields. That is: the same chiral phase change 
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that takes the neutrino field into a left electron field will change an up quark 
into a down quark. The reverse process proceeds in the correspondifig way. 
The "neutra l"  interaction will arise from a change in the phase of  one of 
the partner fields canceling that of  the change of the other. 

In the language of bilinear spinor operators described before, we could 
write all these processes in terms of spinors: if {X~, Xu, Xd, Xe} = Xa represent 
the neutrino, up-quark, down-quark, and electron fields, respectively, and 

t t t t t , Xe} = with the orthogonality their respective dual fields are {X,,, Xu, Xd X a ,  

condition X*aOb = 8,,b, then the processes above can be described by 

~V- = w-(geX~ + XaX~) (77) 

r + = w+(x x t, + x.x ) (78) 

and the neutral interaction (to be combined with the electromagnetic) is 

~.r3 = w31( ~ +  ~ -  _ ~ -  ~ + )  (79) 

provided that, in order to account for the spin h/27r of the gauge fields, in 
all cases the spins of each spinor operator of  the product  are opposite, i.e., 
that the spin of  the electron field created is opposite to that of  the neutrino 
field annihilated, etc. Then these processes correspond to vector interactions 
with total spin one, equal to the change in spin of  the field during the 
interaction. 

What we will show below is the correspondence between the interaction 
fields and each product of  an interaction operator, written here in a formal 
way. We should add at this stage that, besides spin, energy-momentum is 
being exchanged during the interaction; for example, a photon interacting 
with an electron with energy-momentum exchange q could be written 

i i  = E ;e( .+.  . . . .  (80) 
p 

stating that the electromagnetic interaction annihilates an electron of 
momentum p and spin component  s and creates an electron of momentum 
p + q and of  opposite spin. 

The color interaction will change one of the spacelike t d indexes of  
the quarks from the value 1 to 0 and produce a value 1 for one of the other 
indexes (which was zero previously), or change the axial vector momentum 
of two of those indexes simultaneously to a total of  the eight operations 
{ 1 ~ 2, 1 ~ 3, 2 ~ 3, 2 ~ 1, 3 ~ 1, 3 ~ 2, 11 ~ 22, 22 ~ 33}, corresponding to the 
SU(3) color symmetry; we can also write these results in a formal operator  
way if we add a color subindex to the quark fields; then 

= (81) 

will correspond to a gluonic interaction changing color b into color a. 
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All these interactions in our diracon fields and in our chiral phase 
language correspond to a change in the wave function 

~b d = u exp(p  d- x +  r  = u exp(q~d) (82) 

with u a spinor and the de Broglie phases be being the sum of  the scalar 
and the pseudoscalar  parts of  the products of  the vector x with the momenta  
given by equations (75). The de Broglie phases are gauged by the r  which 
also contain scalar and pseudoscalar parts. For the leptons the de Broglie 
phases are 

Ce,ectro, = p ' x ,  + 00 (83) 

r176 = pOXo + iy5 p kXk + r O, k = 1, 2, 3 (84) 

The spinor u for the electron can be left- or right-handed, whereas for 
the neutrino, in order to satisfy equation (64), only the left-handed field is 
possible. 

In order to preserve rotational symmetry, for each one of the quarks 
we need to show explicitly the gauge phase r  ensuring that the overall 
de Broglie phase is space-symmetric.  This requires a complicated vector 
notation. I f  a space index is k (with values 1, 2, 3), a reference space index 
is r = 1, 2, 3, and a color index is a or b (with values r, b, g), we have a set 
of  three multivectors [vector+ i axial vector, i = (-1)1/2], 

a __ c a r  ar a e k  - -  k T r ;  C k = COS t O r k [ C O S ( ' B ' t r / 2  ) + i y 5  s i n ( T r t ~ / 2 ) ]  (85) 

for each color a of  a given quark, direction k in space, and quantum number  
t a in Table I, for reference space direction r, this reference space direction 
at an angle Wrk with the observer 's  space coordinates k. This is a more 
general notation than that of  equation (70), where, for simplicity, the particle 
was taken to move in a direction with all cos wry, = 1/.,/3. The c~ ~ are then 
the sum of  a scalar and (i times) a pseudoscalar. 

For the purpose of  our formalism we need a duality-symmetric set of  
coefficients b~! such that c~r+b~'~=cos w~k, the ordinary cosine directors 
(no axial vector mixing). 

In terms of the multivectors (85) the de Broglie phases for the quarks 
are 

up quark r .... o ., k ~, k o =p xo+ek p x,+bk r x,+(a,., (86) 

down quark &a.t,=pOxo+cbrpkx,+ br k o bk r xr + Cd.b (87) 

The constants c~" are different for up quarks and for down quarks, corre- 
sponding to the t~ quantum numbers. 

Now, the phase angles qSc,~ can either change the scalar-pseudoscalar  
structure of  the de Broglie phases or leave them with the same structure. 
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In the first case we have a change of the particle's nature (the resulting 
wave function will obey a different wave equation), and in the second case 
we have a type-conserving interaction. For this purpose we construct a 
Lagrangian which is invariant to the changes of the phase structure of the 
different ~bd = P~X~ + c~~ shown above. We do this here using matrix notation 
for isospin to conform to the usual expressions of  the standard theory. 

5.2. A Lagrangian Formulation of Electroweak-Color Interactions 

For the presentation of  the Lagrangian we have at least two options: 
either we put all eight (left-handed) fields together in a column isospin 
matrix and show the pair of fields connected by SUw(2) symmetries and 
the triad of fields corresponding to SU(3)co~or interactions, or construct 
directly the SU(2) doublets and the SU(3) triplets. The first possibility is 
the more physical one, although it requires a less familiar and more elaborate 
notation. The second one shows directly the Uy(1) x SUw(2) x SUe(3) sym- 
metry in its clearest form and conforms to most current papers; for this 
reason we will use it here, at the expense of  writing more terms in the 
Lagrangian. 

First we need to state clearly that for each term q5 B in the phase angles 
in (82) we need to add in the Lagrangian densities a term -gB in the 
(covariant) derivative, as usual in gauge theory, and a kinetic energy term 

1 ~7/L ~' ~ B - ~ - B  - - ~  for the gauge field B, again in the usual way. But what is new 
in our approach is that if the gauge angles in (82) change the scalar- 
pseudoscalar structure of ~Od, then the d field has been transformed into a 
new field, say d'; then in the Lagrangian the covariant derivative term will 
acquire an index a = 1 , . . . ,  N 2 -1 ,  indicating that it corresponds to an 
SU(N) type-changing interaction field and it will appear in the covariant 
derivative and in the Lagrangian multiplied by an SU(N) matrix Ta; then 
-gB ~-gBaTo. The representation of the T~ matrices required here is the 
isospin (or color) step up or step down form. 

Let us illustrate this for the electron-neutrino left-handed pair. We 
start with the definition of the SU(2) isospin pair and its kinetic energy 
Lagrangian density, 

K=ly.O~; L =  ( ~ i ) ;  2gK.L=iEIT~o~L (88a) 

and, in order to make it gauge invariant, we transform the kinetic energy 
operator into the standard covariant derivative, 

/(w ,.= (y,(iO" - g W ;  -�89 gy~W~ "~ 
" gT. W~ "g.(iO" + gW~ -�89 

= 3,.(i10" - gW~. T" - g' YB')  (88b) 
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w i t h  T a 1 a T a = ~T, the being the Pauli matrices, and Y a charge matrix, to 
obtain the SU(2) gauge-invariant Lagrangian density 

~K,c = EK~,yL (89) 

The Lagrangian density (89) will have three contributions, ~LeL--~L~'L, 
~L(W+) eL, and ~L(W-)~L, which have some special properties: the first 
term is a concerted scattering where the energy-momentum given to one of 
the leptons is withdrawn from the other; the second asserts that (W+) eL 
behaves like a neutrino, and the third that (W_) ~'L behaves like a (left-handed 
part of an) electron. In the diracon theory we can immediately keep the 
definition of L and its use as a subindex, but in principle it was not needed 
to state that the neutrino was left-handed, because it must be left-handed 
to obey its wave equation. The kinetic energy operator is slightly changed 
through the use of the substitution y~, ~ 3 / =  aa(~)3,,~ defined in (46) to 
read for free fields 

!t 

before it is explicitly made gauge invariant, and the SU(2) part in the 
diraconJ theory, co~rresponding to (88b), is 

/~w=(  ', y~)(iOu-gW~) -yu[a(~[(l~)p~-a(e)(l~)p~]~ 
y~[a(e)(l_t)p;_a~,.)(i.t)p~ ] y~)(iOu+gW~ ) ] (91) 

Here again, in the notation of  our formalism, we have the following concer- 
ted interactions: the "neutral"  interaction, where the moment given to the 
electron field (-gW~y~,)  cancels that given to the neutrino field; the "posi- 
tively charged" interaction [at~)(l~)p~-a~)(i.t)p~], where an electron of 
initial moment p ~ y ,  appears in the final state as a neutrino field with 
momentum a ~ ~)(/_t)p.~ %;  and, finally, the reciprocal, "negatively" charged 
interaction, where the initial state is a neutrino and the final state is an 
electron. All this is obtained through changes in the vector-axial vector 
coefficients aa(/.t)y~. The equivalence of (91) and (88) is immediate if we 
now apply both to the L wave function, which is an eigenfunction of  iy5 
[or equivalently of the aU(~)]: -aa(~)L = L. 

We finally obtain, as expected, the equivalence 

�9 .~ ~, [ 0  gW~+=(p~-p~)(~ ;) and gW'~=(pc-p~)~l ~) (92) 

A similar procedure transforms a set of three colors of a quark field 
among themselves. Again it is advantageous to write the representation of 
SU(3Lo~o~ in the eight operators (step up, step down, and color neutral 
interactions) between the three pairs of colors r-b, r-g, and b-g. 
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It is very important to consider that in all interactions there is a 
"conservation" of our td numbers because both the energy momentum and 
the axial parts are conserved during the interaction; Keller (1984) illustrates 
these rules (see the schemes in Casalbuoni and Gato (1980)). 

Our procedure has been the following: (1) write the phase angles of 
the de Broglie phases [equation (69)], (2) introduce a covariant derivative 
for each component of the gauge phase angles [equation (68)], and (3) 
write the concerted pairs (or trios) of particle fields in the form of isospin 
or color multiplets, with the corresponding electroweak and color chafgeL 

The complete Lagrangian density is 

, ~  -'~ , ~  , -[- ~ B "l- ~ ,  W "~- ~ Q -~- ~ ma s s (93) 
with 

~, s + = g B.] t fren E y U ( - � 8 9  (94) 

s _•  n~" (95) 4utzuaw 

~ W  1 = -zW~.  �9 W ~'" (96) 

~mass : - -  G e (  l----~)h~l eR - -  t~eR6 *hL ) + lUG - g T  . W - g ' Y B ~ /  2 ) 4ol 2 - V(  fb ) 
(97) 

" I ~ q  = qKw.y ,  c q - z G . ~ "  G "~ (98) 

where we have introduced the kinetic energiesof  the gauge fields, the Higgs 
fields discussed below, and the short-hand Kw, y.6 for the kinetic energy 
term of the quarks with weak, U(1), and color interactions: 

P~r  P~rb ~ P" e u d r  - -  Purg 

P ubr P u b  P ubg P udb - -  

P~.gr P#ug P~.g - -  - -  P udg 
/(w,v,c=Y~ P~ur - -  - -  P~r P~rb P~rg = 7"P~ (99) 

- -  P~ub - -  P~'br P~b  P~bg 
0. p- 

- -  - -  P dug P~gr P dgb P ~ g  

Here we have used, for the gauged momenta of color-a quark q, 

3 . - � 8 9  ~" (100) PqUa = iaqa ( t z  )0 tx - gTq  W 3 - g c G . .  

with the definition 

Oq = T 3 +  Yq /2  (101) 

For the color interaction between like quarks of colors a and b with initial 
momenta p~ and final momenta Pt, 

Pq'~b = aqo(tx )P.[ - aqb( tx  )P  "u, (102) 
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And for the weak interaction between quarks of  types q and q' corresponding 
to the same color a, 

Pq~,,, = aqa(Iz )p~ - ao,,~(tz )p~ (103) 

Other interactions, for example,  simultaneous color and type change, 
are not included here, for simplicity, but this kind of q-q'  scattering can 
occur as a higher-order process and could be represented here as a set of  
two more entries in the matrix (81). 

Again, as in the case of  leptons, the identification of the standard W+ ~ , 
W~_, and Ga% fields can be done once the result of  operating with aqo(I.~) 
on the wave function 0qa is known. 

The need of  a colorless combination c of  quarks in order to make 
~quark rotation invariant imposes a bound state between quarks adding up 
to c=da  or c = r + b + g ,  that is, either 

aq,~(tz )p~ + aoa(tz )p ~ = cos ~b~p ~ (104) 

for a meson state, or 

aq, r(tz )p~ + qq2b(t z )p~ + aq3q([..l, )pU3 : cos ~b"p ~ (105) 

for a baryon, showing that the momenta  of  the component  quarks are not 
independent  at any time. The hadron momenta  include the gluon momenta ,  
which, in turn, as shown in (102), depend on the quark momenta ,  the 
situation being very complex because the gluon-gluon interaction is possible 
and has to be included, as discussed in quantum chromodynamics.  The 
intensity of  the gluon fields is then fixed by the requirements of  colorless 
elementary composite particles, the hadrons,  and because this intensity is 
given by the gauge field equations relating it to the sources; this in turn 
generates a distance parameter,  the size of  the hadron or equivalently the 
range of the gluon field, which ensures that the hadron can be considered 
colorless (Keller, 1984). 

5.3. Particles with Rest Mass  

There are then two types of  elementary particles: the quanta of  the 
lepton fields and the composite elementary particles, the hadrons,  which 
are composite,  but cannot  be divided without rotational symmetry being 
violated. 

Equations (102) and (103) show explicitly the role of  chiral symmetry 
in generating color, charge, and weak charge. 

To understand the structure of  the ~f . . . .  Lagrangian, we must recall 
that the y~ ant icommute with iys; for this reason the gradient operator  
changes a right- (left)-handed field into a left- (right)-handed field. 
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Then we have as the only choice for the neutrino left-handed field 

a~%%,qeL = 0 (106) 

but for the electron field we have the more general possibility of relating 
the left- and right-handed fields, 

yuO"~O% = rn  ei~ n and y~O~beR = m ei~ ~ (107) 

Then the possibility of  the simultaneous existence of both (free) left- 
and right-handed electron fields allows the introduction of  a new (mass) 
parameter, thus breaking the SU(2) symmetry between the electron and 
the neutrino. 

The expectancy value of Y0 is the overlap of left-handed and right- 
handed components,  so ~O+yo~O = q~q~ is proportional to the mass which the 
field can acquire. A common normalization is q~qJ = 2m. This is clearly seen 
in the Weyl representation of the y~. 

We have here a new type of gauge freedom where a combination of 
left- and right-handed fields can be mapped into itself. In the case of bound 
particles (always the case of  quarks), the distinction between left-handed 
and right-handed fields vanishes because of the presence of the interaction 
fields in the momentum operator; besides, the kinetic energy of  the particle 
and of  the gauge field (gluons, etc.) will have to be added to the center-of- 
mass (rest) energy of the composite particle (proton, meson, etc.). 

For particles with larger phase angle difference between the right- 
handed and the left-handed parts, special care has to be taken to account 
for the noncommutabili ty of y ~  and the y~. 

The Higgs mechanism has to be chosen to explain the masses of the 
W within the Glashow-Weinberg-Salam theory and to express (106) and 
(107) in (97) because the left- and right-handed fields are independent. 

In order to proceed with the discussion of the correspondence with 
the standard U(1) • SU(2) x SU(3) color-electroweak interaction (Green- 
berg, 1982; Fritzch and Minkowski, 1974; Georgi and Glashow, 1974; 
Georgi, 1975; Salam, 1968; Weinberg, 1967), we need to identify the scalar 
Higgs field. This is easier if we first write it in a formal, spin operator way. 
All the interactions above were required to simultaneously change the spin 
of the interacting particles, but we can also construct new interaction 
operators with the (opposite) requirement that the spin is conserved during 
the interaction, 

I2I = h~';~s~J,.~ (108) 

Here the operator /-t corresponding to the effect of the Higgs field will 
change the initial field f into the final field f '  with the same spin, but f and 
f '  need not be the same. Then the ope ra to r /4  will carry a new isospin I, 
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equal t o / r  +/r ,  in the same way as the I~" operators above carried isospin 
or the G operators carried color. A neutrino-electron/-), for example, He~ 

A 

and H ~ ,  will carry one unit of isospin; four of  those scalar operators can 
be constructed corresponding to the four pairs eO, u~, e~, u~. The last two 
have zero isospin, whereas the previous ones have -1  or +1 isospin, 
respectively. This is the origin, within chiral geometry theory, of the isospin 
of the Higgs fields. Their expression in terms of our diracon field and their 
chiral phases is given by (108). It is obvious that /4 and W cannot be 
independent; W changes the isospin of/-) ,  and /4 will in turn define a 
reference vacuum for W. 

This scalar field will present an asymmetry with respect to the chiral 
set [spin(8)] of left-handed lepton and quark fields, because the electron 
field can be both left- and right-handed (eL and eg) and two terms will 
contribute in this case. Then the uncharged scalar, zero isospin, field will 
break the isospin symmetry among the scalar fields, due to the interaction 
between eL and e R. 

In the matrix notation above, X~--(  . . . .  X ~ , . . - )  is orthogonal b y  
construction to Xd' if d # d'. But the existence of nondiagonal terms in the 
Lagrangian shows that they are not physically independent; their relation- 
ships are explicitly formulated in the theory. 

The Lagrangian (93) should be extended to include antiparticles. The 
particle-antiparticle formulation could look somewhat different for the 
electron field and for the neutrino or quark fields. We obtain the electron 
wave function from the even sum eL+ eR and the positron from the odd 
sum e L -  eR; we see that there is a difference of  ~-/2 in the relative chiral 
phases determining the character of the fields. 

For the neutrino the phase difference is the same, but is usually given 
explicitly in the wave equation; for example, the positive energy solution 
of the neutrino, E = ]p[, satisfies 

t r -  PX = -X (109) 

corresponding, then, to the left-handed field, and the antineutrino, E = -IPl, 
satisfies 

~-(-~)x =x (110) 

and corresponds to a right-handed field. In both cases, for the particle- 
antiparticle, the change in phase is ~-/2 in the chiral plane 0R ^ 0L, and 
there is no basic difference. 

5.4. Interaction Fields and Dual i ty  

We end this section with two remarks (K2) about the geometrical 
interpretation which has been generated. 
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We first recall the notion of parity inversion P or space conjugation, 
consisting in the  reversal of all the spacelike vectors of a multivector A; 
from the anticommutativity of the y . ,  

PYo -~ Yo, P'Yk ' ' )  --')/k = '~0'~k'~0 (111) 

Then, in general, 

PA = yoAyo = A P (112) 

and the notion of Hermitian conjugation gives, from (112) as product 
reversal plus parity inversion, 

A* --- yo,4y 0 (113) 

(in the algebra defined in Section 2 parity inversion will change 75 into -3'5). 
It is very important to understand the geometrical origin of the currents 

appearing in the Lagrangians (93). The normalization @-tp = @+7o~ =2 m  
introduced above is the magnitude of a vector J ~ = ~ y o ~  according to 
(48)-(50). For the system where the particle is at rest it is just two times 
the rest mass m of the particle and, because the Lorentz transformations 
are isometries of the vector algebra, it is the value in any (observer's) system 
S. The components of that vector in S are J~ �9 y , ,  or (in units of - e )  

Jb 'Y~ = - e ( f f ' y o ~ y . ) ~  = - e ( y o ~ * y o Y o ~ y . ) .  

= - e ( ~ * y o y ~ ) s  (114)  

where the subscript s stands for scalar part, and (113) has been used 
(Hestenes, 1966, p. 44); premultiplying (114) by the unit dual (row) spinor 
u + and postmultiplying it by u, we obtain the usual definition of the 
(conserved) current 

Jr = - e~3'~0 (115) 

used in the Lagrangians. 
We have shown before that we can obtain a deeper geometrical insight 

if we analyze the example of the plane wave solutions F of the field 
intensities of the free Maxwell equations 

ElF = 0; F = f e  ~,kx (116) 

the bivector f and the wave vector k being constant and obeying 

k f =  kof; k7o = ko+k (117) 

ko being a scalar and k a space vector with the conditions ko = +[kl, obtained 
by multiplying (117) by ko+k. If we apply to (99) the parity operation, f 
is transformed into f e  obeying 

ko f  p = - k f  P (118) 
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showing that f and f P  behave as photon fields with the same energy and 
opposite momenta.  On writing f =  e +  ysb, where e and b are space vectors, 
we have that equation (117) corresponds to koe= yskb and kob=-yske,  
showing that k, e, and b are mutually perpendicular,  e 2= b 2, and e .  b = 0. 
The factor e ~Sk'x in (116) shows that e and b are rotating into each other 
with a phase angle ~b = k.  x and that in the free field f P  the rotation takes 
place in the opposite sense ~b P=-~b = - k . x ,  corresponding to the two 
possibilities of  circularly polarized light. For the photon field p = (h /2~)k  
is the linear momentum;  then we find again that the de Broglie phase 
c~ =p.  x / (h/2~')  corresponds to a duality rotation. The electromagnetic 
field, as in fact all gauge fields in our theory, adjusts the phases of  the 
duality rotations between accelerated charged particles when photons are 
emitted or absorbed or when a particle is to be described in reference to 
other charged particles. 

In the case of  the Maxwell equations in the presence of a source, 
equation (116) should read 

DF = J + K (119) 

The four-gradient operator  in (119) has vector character and F is a 
bivector; then their product  contains in general a vector part J and a trivector 
part  K (Hestenes, 1966). Vectors and trivectors are dual to each other in 
spacetime. We have used in the Lagrangians the vector current (115) or 
electric charge current. The trivector part K corresponds then to a magnetic 
charge current 

K~ - o D (120) = g~bmy~ ~bm, y~ = iysy~ 

with g'm the wave function of the (thus far hypothetical) magnetically 
charged field m, and g the coupling constant for magnetic charges. The 
constant g is not independent of e (Dirac, 1931); for fermions 

eg=nhc/47r, n = 0 , •  (121) 

(for an elementary monopole  g = e/2c~, a = 27re2/hc); then no new physical 
constant is involved. 

In our theory the non-Abelian gauge fields are related to trivector 
currents of  the type (120); then we expect that g plays an important role 
and that for those currents and their gauge fields the replacement e--> e/2ce 
should be done. I f  only one universal coupling constant e is kept for the 
several gauge fields, a factor (e/2a)" should be absorbed into their 
definition. This is a natural choice in our theory. The constants a and n 
would be given by the self-consistency procedure: ~--> J +  K--> F, (W, G, 
or H )  ~ q,, that is, computing the fields, consider them as sources, compute 
gauge fields, and use them to find the fields again. For the calculation of 
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W, G, or H we should use the charges ed or gd of  the transition states, as 
well as the appropriate  transition currents and effective masses of  the boson 
interaction fields. 

This is, however, not always the actual procedure in elementary particle 
physics, where very often the fields are considered free, transition prob- 
abilities are computed,  and the final fields are considered free again, that 
is, where event probabilities are the main concern (including the spatial 
distribution of the cross section). In this case we have to compute the 
coupling constants from e, a, and parameters like the rest mass of  the 
electron me or related quantities. It is important to realize that rest masses 
are related to coupling constants other than the electromagnetic, and that 
until a theory can give the vacuum expectation value ~b o 2 --[~bn ]2 of  the Higgs 
field in terms of a, this parameter  (or me) remains an independent basic 
parameter  of  the model. 

We could, for example,  fix the electron mass me = e~bo, defining the 
Higgs field amplitude in terms of e, and then use the argument that the W's 
and Z ~ are linked to a magnetic current, in the circuitous manner  proposed 
by Akers (1987), to obtain mw= me/2(2o~)3 for the mass of  the W intermedi- 
ate vector boson [that is, mw -- 82.1 GeV to be compared to the experimental 
value mw= 81.8 + 1.5 GeV (Particle Data Group,  1986)], that is, the masses 

�9 of  the W particles are proport ional  to the Higgs field amplitude (and they 
should be proport ional  to the change of td numbers involved in the transi- 
tion), and for the coupling constant 

(2/3)2(2a) 6 
G ~ -  1/2_2 - 1.165 x 10 -5 GeV -2 (122) 

2 ,,,e 

in terms of a and me [accepted value Gw = 1.165 x 10 -5 GeV -2 (Particle 
Data Group,  1986)]. This point deserves further investigation. 

6. D I S C U S S I O N  AND C O N C L U D I N G  REMARKS 

6.1. Basic Purpose 

The theory developed in the preceding sections had as a basic purpose 
to show that the spacetime geometry contains all the elements necessary to 
describe the elementary particles and their interaction fields and that the 
reverse argument can be used, that we have used spacetime as a frame of 
reference because it is the geometry generated by a large collection of  
interacting spinor fields. 

The revolution in physics that led to the standard model (SM), where 
the building blocks are taken to be quarks and leptons and their interacting 
(gauge) fields, is reflected in the current titles of  elementary particle physics 
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textbooks (for example,  Close, 1979; Field, 1979; Huang, 1982; Okun, 1982; 
or Halzen and Martin, 1984). Therefore we had to structure our discussion 
to show that the standard model was fully included in our theory, with no 
at tempt made to go beyond it. We obtained nevertheless besides a complete 
representation of all structural aspects of  the SM, a logical scheme for other 
concepts (mainly that of  confinement, or, equivalently in our theory, that 
observed particles should be colorless). 

Quantum mechanics was given a setting in spacetime, but it is not 
discussed in its principles beyond what can be deduced directly from 
Postulate I I I  and the spacetime geometry. Postulate I I I  itself is needed to 
give an objective meaning to the relationship between the matter fields and 
the frame of reference we have called the universe. Even if we had to include 
the "wave functions" for the fields and their "wave equations," we remained 
at the level of  one-particle approximations and many basic concepts of  
quantum mechanics were not even mentioned. 

Postulate I I I  introduced Planck's constant in the process of  referring 
a field to the background universe. In order to do that, a geometrical 
momentum in P~ was defined, which is nothing else than an energy- 
momentum density, with h defining a unit hypervolume in spacetime. The 
definition of the energy-momentum density was basic to construct a wave 
equation stating that P is one of the defining properties of  the field, which 
is invariant under  translations in spacetime. The form that is computed and 
used leads otherwise to a probabilistic type of analysis of  quantum 
mechanics. In fact, P~ defines a local velocity V(x), with components  
V,(x) = ~ .  V(x), and a new type of question can be asked: which is the 
flux (per unit area and unit time) for the field at point x?  The density of  
particles, for example,  is given by a quantity p = [ V~ 2. As a con- 
sequence of this and of the wave equations, a complete analogy could be 
developed with the theory of moving dislocations in a lattice where the 
gauge fields will appear  as perturbations arising from the presence of the 
particle fields, but these considerations are outside the purpose of the present 
paper. 

It was also important  to show that parameters (like me) or coupling 
constants (like e) were introduced in order to define a field as "f ree"  as 
possible, so they represent the connection of the studied field to the rest of  
the universe. The concepts of  volume and of distance had the same origin: 
the need to relate a given field to the rest of  the universe in a form that will 
allow the splitting of the components  of  the system in a rational way. We 
had nevertheless one particular case where that separation is not possible, 
the case of  the quark fields. The reason is that from the several types of  
fields we have  discussed so far only two (e and v) could be observed as 
free fields: massless neutrinos or massive electrons. A second type, isolated 
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quarks, will break rotational invariance. But if in this case we demand that 
we should work with a composite field where such a combination of particles 
of the quark type is made that the ensemble is no longer rotational symmetry- 
breaking, then this second type of field may also be observed as an elemen- 
tary free composi te  field. 

We arrive then at a new concept. Ordinary composite particles, such 
as atoms and nuclei, can be split when energy is available into smaller 
components, whereas the composite elementary particles cannot, even if 
enough energy were available, unless a quark and antiquark are simul- 
taneously created to restore rotational symmetry. This new type of particle, 
which, of course, corresponds to hadrons, will require, in order to preserve 
Lorentz and rotational symmetry, that three quarks (or a quark-antiquark 
pair) be together as a minimum in a small volume of space where there 
should be some coherence among the three quarks. This gives rise to a new 
type of interaction where each quark is constantly related to the other two 
in such a way that no particular "color"  can be singled out. To achieve 
this, we need to associate each quark to a number of quanta of a symmetry- 
constrained gauge field with the complementary colors, gluons, all together 
adding up to the hadron's mass. 

This is in fact the origin, in our theory, of the concepts of confinement 
and of the "bag"  size which have been so fruitful in quark physics (see, 
for example, Close, 1979, Chapter 18). 

6.2. Some  Final Considerations on the Relation Between 
Multivectors and Spinors 

We have explicitly shown the mapping of Dirac spinors to multivectors 
and used the energy-momentum vector conservation and the Lorentz trans- 
formations to derive the Dirac equation, which in turn defines the Dirac 
spinors themselves. The use of a larger subset of the multivector a lgebra--  
vectors and trivectors (actually y~ and iysy~; then complex spacetime 
algebra was in fact used)--al lowed us to generalize the Dirac equation to 
generate isospin and color symmetries. The solutions of the new equations 
generated a new set of spinors. We could then concentrate our attention 
on the multivector-spinor relationship. For this purpose it is convenient to 
use the general spinor expansion, given, for example, by Crawford (1985), 
and discuss the structure of the theory from that starting point. Crawford 
writes for the spinor q, 

qr = e-~+ (Y~ + zrys + J g y .  - iK~ys  y~ +�89 = e - i C S R A y A T  ] (123) 

where the real numbers R A are the scalar (E), pseudoscalar (~'), bivector 
(6 . . ) ,  vector (J . ) ,  and trivector (K~) pans, respectively. ~b is a phase angle 
and ~7 an arbitrary spinor [we can choose, without losing generality, ~7 + 7/= 1; 
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above we have called it u and given it the name Casanova spinor projector; 
see Casanova (1976)]. He points out that the Pauli-Fierz identities provide 
nine algebraic equations among the 16 multivector components R a of the 
normalized bispinor densities (here the YA should be Hermitian): 

(124) 

The Pauli-Fierz identities among the 16 densities pi are 

j.j'~ = o-2+ ,rr 2 

k u k "  = - j u j "  (125) 
j ~ k "  = 0 

Y.~ = (0 .2 + r 0-~.~.d"k" - ~ ( L k .  - L k .  ) ] 

The normalization of q/ is 

R a = ( 1 / 4 N ) p  A (126) 

with 

N 2 =�88 y s r r + j ~ ' y . ) [ 1  -i(o-2-} - 7 7 " 2 ) - ' ( 0  - -  T 5 7 7 " ) k . 3 / 5 " g " ] ' O  (127) 

Then we should write (123) in the form 

0 = e- i~(  Z + 7rys+ J~y"  - i K ~ y s y "  + � 8 9  (128) 

to show the explicit relation between a spinor and the corresponding 
multivector ~ .  Also �9 = ~b~ + as a Cartan map. 

In the spinor (123) we have then eight independent quantities. I f  ~ is 
to be a solution of a generalized Dirac equation (Section 4.3), the phase 
angle ~b can be gauged by the sum of a scalar, a pseudoscalar,  and a bivector 
and the J .  part as well as the K .  part are gauge invariant after replacement 
J~ ~ J . -  e A .  and K . - ~  K . -  gA'~. There are then eight different, linearly 
independent,  forms of choosing the coefficients R A in (128), corresponding 
to our eight diracon fields of  a given family in Table I. Other families are 
related to the first by a phase angle in multivector space. A special plane 
in multivector space is the plane W of the vector part of  the momentum 
and the trivector part of  the momentum [equations (71)-(73)], where the 
ratio of  the vector part to the total momentum was the charge Qd of the 
particle. 

More generally, we should use three planes W~ = ( y~ - iT5 y~ , Y2 - iT5 Y2 , 
and Y 3 -  iysy3),  which together will define the charge, the isospin, and the 
color in the form described above. The weak interaction between different 
families f will require the use of  W particles with different relative phases 
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in a direction orthogonal to all three W~, planes; we could say that then 
we will have a set of  planes Y ~ " " W~ tdted relative to one another by successive 
90 ~ angles in a "f lavor" plane perpendicular to the W~ planes. This will 
generate the Cabibbo angles in electroweak interactions. 

Equation (128) shows that the ordinary Dirac spinors are the projections 
of  a multivector 

t~ = ei~M~l (129) 

1 /L~, M = ( E + T r y s + J ~ . y t ' - i K ~ y s y ~  +~S .~o  " ) / 4 N  (130) 

The multivector M is the normalized product of  a set of  projection operators 
and a basic multivector rod, 

M = P . P b m a / 4 N  (131) 

This provides the connection with the alternative definition of a spinor as 
given, for example, by Lounesto (1980). M obeys an equation equivalent 
to the Dirac equation and has been discussed in detail by Hestenes (1966, 
1975) for the case of  the electron and neutrino fields. 

The mapping q,0 r results in another multivector 

qJtp T = Mq, = e -  24~P~Pb[m,112/ 4 N = A e-24" PaP b (132) 

which also Obeys an equation similar to the Dirac equation. The idempotency 
of Pa and Pb makes in fact (132) almost equivalent to (131). 

6.3. Considerations about the Mass, Momentum, and Angular Momentum 
of a Fermion in the "Universe" 

We have considered a uniform background, the "universe," and then 
we have singled out a particle, a fermion represented by a spinor field. The 
fermion is then characterized by an energy-momentum and an angular 
momentum (this is described by the corresponding Dirac equation) and 
when a collection of other particles were also considered, the relation 
between them prompted the introduction of the interaction gauge fields. 

But the energy-momentum and the angular momentum of a particle 
and "i ts" gauge field are not independent. In fact, it has always being 
recognized that the gauge field contains energy E, momentum p, and angular 
momentum S (see, for example,  Higbie, 1988). The gauge field only appears  
when a second, test particle is considered; virtual gauge bosons have then 
to be included in this case, photons, for example. The main problem has 
been the need for either a distribution function or a cutoff in the integrals 
where E, p, or S are evaluated from the electromagnetic field generated by 
the electronic charge e and magnetic moment  /x. Feynman et al. (1964) 
describe how, for the mass rno a cutoff should be a = 2ro/3 = 2e2/127rrno c2, 
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or ~ of the classical electron radius. Higbie finds the same radius for the 
angular momentum (a is then of the order of  10 -5 of  a Bohr radius atomic 
unit). The value of the angular momentum is S = -I~(e/mo), equal to the 
spin angular momentum of  the electron, and he simultaneously obtains the 
correct g.~ factor gs = 2. 

It is also possible to show that the circulation of the matter field qJ 
representing the electron carries the unit h/4~r of angular momentum or, 
equivalently, of  course, that the expectation value of To3/2 is h/4~. 

The angular momentum S of the gauge field should contribute to the 
virtual photons;  two particles have to be considered in that case at least. 
The analysis of  the two-particle electromagnetic field leads in a first approxi- 
mation to the familiar e2/r  behavior for the energy of the gauge field. It is 
important  then to recognize that the entity called "part icle" should be 
understood as the particle in spacetime and that it includes in an inseparable 
form all of  its gauge fields and the properties associated with them. These 
considerations point to the possibility that the Higgs fields are in fact a 
collection, which correspond in special ways to the different particles, and 
that again they provide the possibility of  describing a nonlinear problem 
as a set of  coupled fields. 

As far as distributions or cutoffs in this type of analysis, we should 
remember  that in our theory a distribution has a natural place as the 
uncertainties that should be given to the definition of position, uncertainties 
arising from the possible finite size of  the universe and from the unavoidable 
fluctuations of  the actual local densities with respect to the average universe 
density, both adding up to preclude the definition of  distances smaller than 
those of a fraction of the classical electron radius. This is an indication that 
a complete theory should encompass both the microcosmos and the 
macrocosmos.  That this is widely recognized can be seen, for example, in 
the list of  topics of the resource letter on cosmology and particle physics 
of  Lindley et aL (1988). 

APPENDIX A. VECTORS AND MULTIVECTORS 

The multivectors are generated by the antisymmetric, Grassmann,  outer 
product A of a basis set {y~} in N dimensions, 

1 
"/~ = Y~ A ,/~ = 5(T~Y~- Y~T~) (A.I) 

defining a two-vector and by recurrence the k-vectors; if the basis set is 
orthogonal, then a basis k-vector is 

TA = T,,,...A (with k ordered by place subindices) (A.2) 

antisymmetric in all adjacent pairs of  indices, and their involutions are the 
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vector direction reversal 

YA = (--Yu)(--Yv) " " " (--YA) (A.3a) 

and the products order reversal 

YA = YA. v/x (A3b)  

The corresponding Clifford algebra is constructed using the Grassmann 
algebra and a symmetric inner (dot) product,  

Yr" % =�89 + %Y~) (A.4) 

to define the total, or geometric, product: 

T~Y~ = Y~" Y~ + Yu ^ Y~ (A.5) 

The geometric product can be defined on a pair of  general multivectors 
M =Y~A Maya and M ' = ~ B  M'ByB by the rule that 

YAYB = ( T A Y B )S  q- (  YAYB)AS  -'-: YA " TB q- YA A YB 

where S means symmetric pairwise product part  and AS means antisym- 
metric pairwise product  part. 

The metric of  spacetime R ~'3 (where the indices tz = 0, 1, 2, 3) is defined 
through the inner product  

g~;~ = %,. y~ = diag(1, -1 ,  - 1 , - 1 )  (A.6) 

in such a way that the basis set consists of  mutually anticommuting 
elements %,. 

I f  the multivector algebra C ~ is considered as the complexification of  
R .... ( N  = m + n), we require the concept of  absolute value square IMA] 2 = 
MA" M~ (which is not restricted to positive values), where M K is a 
multivector with all coefficients being the conjugate of  those of  MA. We 
can write formally for the complexification ~ c - C  4 of the spacetime 
algebra 

All multivectors are operators on themselves and on their spinors. The 
best-known examples of  operations for @,. are: 3'0, generating the parity 
inversion P; y~23, the time inversion T; Yo~, the Lorentz boosts L; y;j, the 
space rotations R; 3,5 = ym23, the duality transformation D; and iys, the 
chirality projection. 

The pseudoscalar  unit is Y5 = Y~,zf, e~'~A~'/4! in spacetime R 1'3, but it is 
simply i [ = ( - 1 )  ~/2] in R ~ 

9 ,  can be regarded both as the complexification of the spacetime 
multivector algebra or as a five-dimensional space whose even subalgebra 
corresponds to spacetime, as shown in the main text. 
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A.1. Some Mathematical Properties of ~c  Spinors 

A.I.1.  Classification o f  L ~  Spinors 

For complex spacetime the multivector i75 plays a central role in the 
algebra; for this reason it is customary to define the main projectors QR 
and QL 

QR = 1(1 + its); QL = �89 - i ts) 

and name the two spinor subspaces generated by the Q on the spinor space 
L~, left-handed L and right-handed R, such that 

L~, = ~R + s  (A.8) 

For ~ c  = complex spacetime with dimension N = 5, the number  of  
basic spinors is 2 p, with p = integer part  of  ( N / 2 ) =  2; then we need two 
projection operators A, which will render either the chiral representation 
A = (iy5 and i'y12) o r  the standard representation (used in physics when 
massive particles have already been defined) with A = (Y0 and iy12). The 
spinors will carry n = 2 p indexes, either as a p-fold index or, as customary, 
a single index a taking 2 p values (a  = 1 , . . . ,  2~). 

I f  L~, spinors are acted by y~ or y ~ , ,  they are mapped  into spinors 
of  the opposite chirality. 

A.2. Covariant Vector and Spinor Derivatives 

Following Hestenes (1966), define a differential operator [] by a series 
of  mappings: 

[~i4~ = 0i~b (A.9) 

where ~b is a scalar and �9  maps scalars into scalars. For a vector field with 
basis R vectors yj, 

~,7~ = - L ~ y k  (A.IO) 

and for multivectors A and B, 

� 9  = ([],A)B + A[5],B (A.11) 

� 9  + B)  = � 9  + [],B (A.12) 

In general, if a = Y./aiY j, then 

Nia = (Oiaj + akL~)y J (A.13) 

Hestenes (1966) uses this operator to discuss problems in general 
relativity [see also Hestenes and Sobczyk (1984) in this context]. 

For our spinor spaces s and E+ we can define 

[]~X '~ = K ~ X  ~, []~X '~+ = - K ~ x  t3+ (A.14) 
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where the Ki~ are related to the L k using the (representation-dependent) 
A,fk c~ fl+ expansion o f  t h e  ,)/k _-- ~a /3  ~"  a/3X X �9 

APPENDIX B. AN I N V O L U T I O N  OF C O M P L E X  SPACETIME 
GENERATED BY L I G H T L I K E  SPINORS 

B.1. Lightlike Spinors 

We have defined a lightlike spinor as a pair ~b of equal two-component  
spinors (71 and 72; 71 = 72) from the same representation and the same 
spin and phase. The definition can be seen more clearly if we remember  
that a Dirac spinor (bispinor) corresponds to the set of  one two-component  
spinor of  one representation and one two-component  spinor of  the conju- 
gated representation [as discussed, for example, in Landau and Lifshitz 
(1965)]. The lightlike spinor pair ~b carries a total spin s -- 1. 

The mapping ~b-> ~b~b t generates the even part  Pc of  the spacetime 
M M il} and is isomorphic to the set multivector algebra: Pc-- {1, a~  , t ~ ,  

ePc = {e, ec~M, ea~,M ie 1} with e an exchange operator interchanging 71 
72 : The condition 71 = 772 should be built in, restricting the elements in the 
mapping. In the simplest matrix representation 

oo  (0 ~ 0) 
with e the 2 x 2 unit matrix (sometimes denoted ~o) and cri the Pauli matrices 
and 

In relation to the spacetime algebra represented by the YA, we can write 

M = il (B.3) aj  M = iysYoYj; then t~ 123 

This could be somewhat physically misleading unless we consider that the 
role of  iy5 is to ensure that chirality is a well-defined quantity for the lightlike 
fields and that yo ensures that the pair (7~, 72) is considered as a unit. 

The mapping presented in the text, to obtain the representation with 
the vector character of  the matter current and the bivector (tensor) character 
of  the electrical and magnetic fields, was given for theory-building reasons, 
but the electromagnetic interaction would be more apparent  if the spinor 
pair formalism were used and the interaction diagrams written and inter- 
preted as a conservation of spinor properties (spin and relative phases of  
the bispinors). 
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